{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} {-# OPTIONS_GHC -fno-warn-incomplete-patterns -fno-warn-overlapping-patterns #-} module Data.Par where import Data.Abs import Data.Lex import Data.ErrM import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts -- parser produced by Happy Version 1.18.9 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn12 :: (String) -> (HappyAbsSyn ) happyIn12 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn12 #-} happyOut12 :: (HappyAbsSyn ) -> (String) happyOut12 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut12 #-} happyIn13 :: (Ident) -> (HappyAbsSyn ) happyIn13 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn13 #-} happyOut13 :: (HappyAbsSyn ) -> (Ident) happyOut13 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut13 #-} happyIn14 :: (Input) -> (HappyAbsSyn ) happyIn14 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn14 #-} happyOut14 :: (HappyAbsSyn ) -> (Input) happyOut14 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut14 #-} happyIn15 :: (Data) -> (HappyAbsSyn ) happyIn15 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn15 #-} happyOut15 :: (HappyAbsSyn ) -> (Data) happyOut15 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut15 #-} happyIn16 :: (TokD) -> (HappyAbsSyn ) happyIn16 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn16 #-} happyOut16 :: (HappyAbsSyn ) -> (TokD) happyOut16 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut16 #-} happyIn17 :: (Pattern) -> (HappyAbsSyn ) happyIn17 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn17 #-} happyOut17 :: (HappyAbsSyn ) -> (Pattern) happyOut17 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut17 #-} happyIn18 :: (Pattern) -> (HappyAbsSyn ) happyIn18 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn18 #-} happyOut18 :: (HappyAbsSyn ) -> (Pattern) happyOut18 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut18 #-} happyIn19 :: ([Data]) -> (HappyAbsSyn ) happyIn19 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn19 #-} happyOut19 :: (HappyAbsSyn ) -> ([Data]) happyOut19 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut19 #-} happyIn20 :: ([TokD]) -> (HappyAbsSyn ) happyIn20 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn20 #-} happyOut20 :: (HappyAbsSyn ) -> ([TokD]) happyOut20 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut20 #-} happyIn21 :: ([Pattern]) -> (HappyAbsSyn ) happyIn21 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn21 #-} happyOut21 :: (HappyAbsSyn ) -> ([Pattern]) happyOut21 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut21 #-} happyIn22 :: ([Pattern]) -> (HappyAbsSyn ) happyIn22 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn22 #-} happyOut22 :: (HappyAbsSyn ) -> ([Pattern]) happyOut22 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut22 #-} happyInTok :: (Token) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x00\x00\x39\x00\x3a\x00\x13\x00\x13\x00\x00\x00\x00\x00\x13\x00\x13\x00\x35\x00\x00\x00\x13\x00\x34\x00\x00\x00\x2e\x00\x13\x00\x00\x00\x00\x00\x13\x00\x2e\x00\x02\x00\x18\x00\x2e\x00\x2e\x00\x2e\x00\x33\x00\x2d\x00\x00\x00\x2d\x00\x30\x00\x00\x00\x29\x00\x32\x00\x00\x00\x00\x00\x31\x00\x13\x00\x00\x00\x00\x00\x00\x00\x13\x00\x00\x00\x2b\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x27\x00\x2f\x00\x2c\x00\x20\x00\x26\x00\x2a\x00\x23\x00\x11\x00\x09\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x24\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x16\x00\x00\x00\x1a\x00\x00\x00\xfd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\xed\xff\x00\x00\x00\x00\x00\x00\x00\x00\xed\xff\xeb\xff\x00\x00\xe7\xff\x00\x00\xf6\xff\xef\xff\xe6\xff\xf0\xff\x00\x00\x00\x00\xf5\xff\xef\xff\xe9\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xeb\xff\x00\x00\xf4\xff\xec\xff\x00\x00\x00\x00\xea\xff\xe8\xff\x00\x00\xe7\xff\xf1\xff\xe5\xff\xee\xff\xe7\xff\xf3\xff\x00\x00\xf2\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x04\x00\x01\x00\x01\x00\x01\x00\x00\x00\x05\x00\x06\x00\x05\x00\x06\x00\x01\x00\x0a\x00\x0a\x00\x0a\x00\x05\x00\x06\x00\x01\x00\x01\x00\x01\x00\x0a\x00\x01\x00\x06\x00\x06\x00\x06\x00\x09\x00\x09\x00\x09\x00\x08\x00\x04\x00\x03\x00\x08\x00\x01\x00\x03\x00\x01\x00\x0a\x00\x05\x00\x06\x00\x05\x00\x06\x00\x01\x00\x04\x00\x02\x00\x01\x00\x08\x00\x06\x00\x02\x00\x07\x00\x06\x00\x04\x00\x07\x00\x03\x00\x02\x00\x04\x00\x03\x00\xff\xff\x0a\x00\x0a\x00\x05\x00\x07\x00\x01\x00\x07\x00\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x21\x00\x0b\x00\x1a\x00\x0b\x00\x20\x00\x0c\x00\x0d\x00\x0c\x00\x0d\x00\x0b\x00\x2a\x00\xff\xff\x26\x00\x0c\x00\x0d\x00\x11\x00\x11\x00\x11\x00\x0e\x00\x10\x00\x12\x00\x12\x00\x12\x00\x22\x00\x25\x00\x13\x00\x11\x00\x1c\x00\x1e\x00\x1f\x00\x0b\x00\x1e\x00\x0b\x00\xff\xff\x23\x00\x0d\x00\x17\x00\x0d\x00\x11\x00\x21\x00\x1c\x00\x1a\x00\x14\x00\x16\x00\x2c\x00\x1d\x00\x2a\x00\x18\x00\x15\x00\x1a\x00\x28\x00\x1c\x00\x29\x00\x00\x00\xff\xff\xff\xff\x25\x00\x0b\x00\x1a\x00\x0b\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (9, 26) [ (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18), (19 , happyReduce_19), (20 , happyReduce_20), (21 , happyReduce_21), (22 , happyReduce_22), (23 , happyReduce_23), (24 , happyReduce_24), (25 , happyReduce_25), (26 , happyReduce_26) ] happy_n_terms = 11 :: Int happy_n_nonterms = 11 :: Int happyReduce_9 = happySpecReduce_1 0# happyReduction_9 happyReduction_9 happy_x_1 = case happyOutTok happy_x_1 of { (PT _ (TL happy_var_1)) -> happyIn12 (happy_var_1 )} happyReduce_10 = happySpecReduce_1 1# happyReduction_10 happyReduction_10 happy_x_1 = case happyOutTok happy_x_1 of { (PT _ (TV happy_var_1)) -> happyIn13 (Ident happy_var_1 )} happyReduce_11 = happySpecReduce_1 2# happyReduction_11 happyReduction_11 happy_x_1 = case happyOut19 happy_x_1 of { happy_var_1 -> happyIn14 (Input (reverse happy_var_1) )} happyReduce_12 = happySpecReduce_3 3# happyReduction_12 happyReduction_12 happy_x_3 happy_x_2 happy_x_1 = case happyOut20 happy_x_2 of { happy_var_2 -> happyIn15 (D (reverse happy_var_2) )} happyReduce_13 = happyReduce 5# 4# happyReduction_13 happyReduction_13 (happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOut12 happy_x_2 of { happy_var_2 -> case happyOut22 happy_x_4 of { happy_var_4 -> happyIn16 (T happy_var_2 happy_var_4 ) `HappyStk` happyRest}} happyReduce_14 = happySpecReduce_2 5# happyReduction_14 happyReduction_14 happy_x_2 happy_x_1 = case happyOut13 happy_x_1 of { happy_var_1 -> case happyOut21 happy_x_2 of { happy_var_2 -> happyIn17 (PC happy_var_1 happy_var_2 )}} happyReduce_15 = happySpecReduce_1 5# happyReduction_15 happyReduction_15 happy_x_1 = case happyOut18 happy_x_1 of { happy_var_1 -> happyIn17 (happy_var_1 )} happyReduce_16 = happySpecReduce_1 6# happyReduction_16 happyReduction_16 happy_x_1 = case happyOut13 happy_x_1 of { happy_var_1 -> happyIn18 (Id happy_var_1 )} happyReduce_17 = happySpecReduce_3 6# happyReduction_17 happyReduction_17 happy_x_3 happy_x_2 happy_x_1 = case happyOut17 happy_x_2 of { happy_var_2 -> happyIn18 (happy_var_2 )} happyReduce_18 = happySpecReduce_0 7# happyReduction_18 happyReduction_18 = happyIn19 ([] ) happyReduce_19 = happySpecReduce_2 7# happyReduction_19 happyReduction_19 happy_x_2 happy_x_1 = case happyOut19 happy_x_1 of { happy_var_1 -> case happyOut15 happy_x_2 of { happy_var_2 -> happyIn19 (flip (:) happy_var_1 happy_var_2 )}} happyReduce_20 = happySpecReduce_0 8# happyReduction_20 happyReduction_20 = happyIn20 ([] ) happyReduce_21 = happySpecReduce_2 8# happyReduction_21 happyReduction_21 happy_x_2 happy_x_1 = case happyOut20 happy_x_1 of { happy_var_1 -> case happyOut16 happy_x_2 of { happy_var_2 -> happyIn20 (flip (:) happy_var_1 happy_var_2 )}} happyReduce_22 = happySpecReduce_1 9# happyReduction_22 happyReduction_22 happy_x_1 = case happyOut18 happy_x_1 of { happy_var_1 -> happyIn21 ((:[]) happy_var_1 )} happyReduce_23 = happySpecReduce_2 9# happyReduction_23 happyReduction_23 happy_x_2 happy_x_1 = case happyOut18 happy_x_1 of { happy_var_1 -> case happyOut21 happy_x_2 of { happy_var_2 -> happyIn21 ((:) happy_var_1 happy_var_2 )}} happyReduce_24 = happySpecReduce_0 10# happyReduction_24 happyReduction_24 = happyIn22 ([] ) happyReduce_25 = happySpecReduce_1 10# happyReduction_25 happyReduction_25 happy_x_1 = case happyOut17 happy_x_1 of { happy_var_1 -> happyIn22 ((:[]) happy_var_1 )} happyReduce_26 = happySpecReduce_3 10# happyReduction_26 happyReduction_26 happy_x_3 happy_x_2 happy_x_1 = case happyOut17 happy_x_1 of { happy_var_1 -> case happyOut22 happy_x_3 of { happy_var_3 -> happyIn22 ((:) happy_var_1 happy_var_3 )}} happyNewToken action sts stk [] = happyDoAction 10# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { PT _ (TS _ 1) -> cont 1#; PT _ (TS _ 2) -> cont 2#; PT _ (TS _ 3) -> cont 3#; PT _ (TS _ 4) -> cont 4#; PT _ (TS _ 5) -> cont 5#; PT _ (TS _ 6) -> cont 6#; PT _ (TL happy_dollar_dollar) -> cont 7#; PT _ (TV happy_dollar_dollar) -> cont 8#; _ -> cont 9#; _ -> happyError' (tk:tks) } happyError_ 10# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) happyThen :: () => Err a -> (a -> Err b) -> Err b happyThen = (thenM) happyReturn :: () => a -> Err a happyReturn = (returnM) happyThen1 m k tks = (thenM) m (\a -> k a tks) happyReturn1 :: () => a -> b -> Err a happyReturn1 = \a tks -> (returnM) a happyError' :: () => [(Token)] -> Err a happyError' = happyError pInput tks = happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut14 x)) pData tks = happySomeParser where happySomeParser = happyThen (happyParse 1# tks) (\x -> happyReturn (happyOut15 x)) pTokD tks = happySomeParser where happySomeParser = happyThen (happyParse 2# tks) (\x -> happyReturn (happyOut16 x)) pPattern tks = happySomeParser where happySomeParser = happyThen (happyParse 3# tks) (\x -> happyReturn (happyOut17 x)) pPattern1 tks = happySomeParser where happySomeParser = happyThen (happyParse 4# tks) (\x -> happyReturn (happyOut18 x)) pListData tks = happySomeParser where happySomeParser = happyThen (happyParse 5# tks) (\x -> happyReturn (happyOut19 x)) pListTokD tks = happySomeParser where happySomeParser = happyThen (happyParse 6# tks) (\x -> happyReturn (happyOut20 x)) pListPattern1 tks = happySomeParser where happySomeParser = happyThen (happyParse 7# tks) (\x -> happyReturn (happyOut21 x)) pListPattern tks = happySomeParser where happySomeParser = happyThen (happyParse 8# tks) (\x -> happyReturn (happyOut22 x)) happySeq = happyDontSeq returnM :: a -> Err a returnM = return thenM :: Err a -> (a -> Err b) -> Err b thenM = (>>=) happyError :: [Token] -> Err a happyError ts = Bad $ "syntax error at " ++ tokenPos ts ++ case ts of [] -> [] [Err _] -> " due to lexer error" _ -> " before " ++ unwords (map (id . prToken) (take 4 ts)) myLexer = tokens {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 30 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 51 "templates/GenericTemplate.hs" #-} {-# LINE 61 "templates/GenericTemplate.hs" #-} {-# LINE 70 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where (new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where (off) = indexShortOffAddr happyActOffsets st (off_i) = (off Happy_GHC_Exts.+# i) check = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#)) then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==# i) else False (action) | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st {-# LINE 130 "templates/GenericTemplate.hs" #-} indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 163 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk (off) = indexShortOffAddr happyGotoOffsets st1 (off_i) = (off Happy_GHC_Exts.+# nt) (new_state) = indexShortOffAddr happyTable off_i happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where (off) = indexShortOffAddr happyGotoOffsets st (off_i) = (off Happy_GHC_Exts.+# nt) (new_state) = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.