# Copyright (C) 2003-2005 Peter J. Verveer # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import math import numpy from . import _ni_support from . import _nd_image from scipy.misc import doccer from scipy._lib._version import NumpyVersion __all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace', 'laplace', 'gaussian_laplace', 'generic_gradient_magnitude', 'gaussian_gradient_magnitude', 'correlate', 'convolve', 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', 'maximum_filter1d', 'minimum_filter', 'maximum_filter', 'rank_filter', 'median_filter', 'percentile_filter', 'generic_filter1d', 'generic_filter'] _input_doc = \ """input : array_like Input array to filter.""" _axis_doc = \ """axis : int, optional The axis of `input` along which to calculate. Default is -1.""" _output_doc = \ """output : array, optional The `output` parameter passes an array in which to store the filter output.""" _size_foot_doc = \ """size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). """ _mode_doc = \ """mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `mode` parameter determines how the array borders are handled, where `cval` is the value when mode is equal to 'constant'. Default is 'reflect'""" _cval_doc = \ """cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0""" _origin_doc = \ """origin : scalar, optional The `origin` parameter controls the placement of the filter. Default 0.0.""" _extra_arguments_doc = \ """extra_arguments : sequence, optional Sequence of extra positional arguments to pass to passed function""" _extra_keywords_doc = \ """extra_keywords : dict, optional dict of extra keyword arguments to pass to passed function""" docdict = { 'input': _input_doc, 'axis': _axis_doc, 'output': _output_doc, 'size_foot': _size_foot_doc, 'mode': _mode_doc, 'cval': _cval_doc, 'origin': _origin_doc, 'extra_arguments': _extra_arguments_doc, 'extra_keywords': _extra_keywords_doc, } docfiller = doccer.filldoc(docdict) @docfiller def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional correlation along the given axis. The lines of the array along the given axis are correlated with the given weights. Parameters ---------- %(input)s weights : array One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) weights = numpy.asarray(weights, dtype=numpy.float64) if weights.ndim != 1 or weights.shape[0] < 1: raise RuntimeError('no filter weights given') if not weights.flags.contiguous: weights = weights.copy() axis = _ni_support._check_axis(axis, input.ndim) if (len(weights) // 2 + origin < 0) or (len(weights) // 2 + origin > len(weights)): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate1d(input, weights, axis, output, mode, cval, origin) return return_value @docfiller def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional convolution along the given axis. The lines of the array along the given axis are convolved with the given weights. Parameters ---------- %(input)s weights : ndarray One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- convolve1d : ndarray Convolved array with same shape as input """ weights = weights[::-1] origin = -origin if not len(weights) & 1: origin -= 1 return correlate1d(input, weights, axis, output, mode, cval, origin) @docfiller def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """One-dimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar standard deviation for Gaussian kernel %(axis)s order : {0, 1, 2, 3}, optional An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented %(output)s %(mode)s %(cval)s truncate : float, optional Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter1d : ndarray """ if order not in range(4): raise ValueError('Order outside 0..3 not implemented') sd = float(sigma) # make the radius of the filter equal to truncate standard deviations lw = int(truncate * sd + 0.5) weights = [0.0] * (2 * lw + 1) weights[lw] = 1.0 sum = 1.0 sd = sd * sd # calculate the kernel: for ii in range(1, lw + 1): tmp = math.exp(-0.5 * float(ii * ii) / sd) weights[lw + ii] = tmp weights[lw - ii] = tmp sum += 2.0 * tmp for ii in range(2 * lw + 1): weights[ii] /= sum # implement first, second and third order derivatives: if order == 1: # first derivative weights[lw] = 0.0 for ii in range(1, lw + 1): x = float(ii) tmp = -x / sd * weights[lw + ii] weights[lw + ii] = -tmp weights[lw - ii] = tmp elif order == 2: # second derivative weights[lw] *= -1.0 / sd for ii in range(1, lw + 1): x = float(ii) tmp = (x * x / sd - 1.0) * weights[lw + ii] / sd weights[lw + ii] = tmp weights[lw - ii] = tmp elif order == 3: # third derivative weights[lw] = 0.0 sd2 = sd * sd for ii in range(1, lw + 1): x = float(ii) tmp = (3.0 - x * x / sd) * x * weights[lw + ii] / sd2 weights[lw + ii] = -tmp weights[lw - ii] = tmp return correlate1d(input, weights, axis, output, mode, cval, 0) @docfiller def gaussian_filter(input, sigma, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """Multidimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar or sequence of scalars Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. order : {0, 1, 2, 3} or sequence from same set, optional The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented %(output)s %(mode)s %(cval)s truncate : float Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter : ndarray Returned array of same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy.ndimage import gaussian_filter >>> a = np.arange(50, step=2).reshape((5,5)) >>> a array([[ 0, 2, 4, 6, 8], [10, 12, 14, 16, 18], [20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48]]) >>> gaussian_filter(a, sigma=1) array([[ 4, 6, 8, 9, 11], [10, 12, 14, 15, 17], [20, 22, 24, 25, 27], [29, 31, 33, 34, 36], [35, 37, 39, 40, 42]]) """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) orders = _ni_support._normalize_sequence(order, input.ndim) if not set(orders).issubset(set(range(4))): raise ValueError('Order outside 0..4 not implemented') sigmas = _ni_support._normalize_sequence(sigma, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sigmas[ii], orders[ii]) for ii in range(len(axes)) if sigmas[ii] > 1e-15] if len(axes) > 0: for axis, sigma, order in axes: gaussian_filter1d(input, sigma, axis, order, output, mode, cval, truncate) input = output else: output[...] = input[...] return return_value @docfiller def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Prewitt filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.prewitt(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 1, 1], ii, output, mode, cval, 0,) return return_value @docfiller def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Sobel filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.sobel(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 2, 1], ii, output, mode, cval, 0) return return_value @docfiller def generic_laplace(input, derivative2, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords = None): """N-dimensional Laplace filter using a provided second derivative function Parameters ---------- %(input)s derivative2 : callable Callable with the following signature:: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. %(output)s %(mode)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: derivative2(input, axes[0], output, mode, cval, *extra_arguments, **extra_keywords) for ii in range(1, len(axes)): tmp = derivative2(input, axes[ii], output.dtype, mode, cval, *extra_arguments, **extra_keywords) output += tmp else: output[...] = input[...] return return_value @docfiller def laplace(input, output=None, mode="reflect", cval=0.0): """N-dimensional Laplace filter based on approximate second derivatives. Parameters ---------- %(input)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.laplace(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ def derivative2(input, axis, output, mode, cval): return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) return generic_laplace(input, derivative2, output, mode, cval) @docfiller def gaussian_laplace(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional Laplace filter using gaussian second derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. %(output)s %(mode)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> result = ndimage.gaussian_laplace(ascent, sigma=1) >>> ax1.imshow(result) >>> result = ndimage.gaussian_laplace(ascent, sigma=3) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative2(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 2 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_laplace(input, derivative2, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) @docfiller def generic_gradient_magnitude(input, derivative, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords = None): """Gradient magnitude using a provided gradient function. Parameters ---------- %(input)s derivative : callable Callable with the following signature:: derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. `derivative` can assume that `input` and `output` are ndarrays. Note that the output from `derivative` is modified inplace; be careful to copy important inputs before returning them. %(output)s %(mode)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: derivative(input, axes[0], output, mode, cval, *extra_arguments, **extra_keywords) numpy.multiply(output, output, output) for ii in range(1, len(axes)): tmp = derivative(input, axes[ii], output.dtype, mode, cval, *extra_arguments, **extra_keywords) numpy.multiply(tmp, tmp, tmp) output += tmp # This allows the sqrt to work with a different default casting numpy.sqrt(output, output, casting='unsafe') else: output[...] = input[...] return return_value @docfiller def gaussian_gradient_magnitude(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional gradient magnitude using Gaussian derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.. %(output)s %(mode)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). """ input = numpy.asarray(input) def derivative(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 1 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_gradient_magnitude(input, derivative, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) def _correlate_or_convolve(input, weights, output, mode, cval, origin, convolution): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) weights = numpy.asarray(weights, dtype=numpy.float64) wshape = [ii for ii in weights.shape if ii > 0] if len(wshape) != input.ndim: raise RuntimeError('filter weights array has incorrect shape.') if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] for ii in range(len(origins)): origins[ii] = -origins[ii] if not weights.shape[ii] & 1: origins[ii] -= 1 for origin, lenw in zip(origins, wshape): if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw): raise ValueError('invalid origin') if not weights.flags.contiguous: weights = weights.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate(input, weights, output, mode, cval, origins) return return_value @docfiller def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multi-dimensional correlation. The array is correlated with the given kernel. Parameters ---------- input : array-like input array to filter weights : ndarray array of weights, same number of dimensions as input output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 See Also -------- convolve : Convolve an image with a kernel. """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, False) @docfiller def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multidimensional convolution. The array is convolved with the given kernel. Parameters ---------- input : array_like Input array to filter. weights : array_like Array of weights, same number of dimensions as input output : ndarray, optional The `output` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional the `mode` parameter determines how the array borders are handled. For 'constant' mode, values beyond borders are set to be `cval`. Default is 'reflect'. cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0 origin : array_like, optional The `origin` parameter controls the placement of the filter, relative to the centre of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns ------- result : ndarray The result of convolution of `input` with `weights`. See Also -------- correlate : Correlate an image with a kernel. Notes ----- Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where W is the `weights` kernel, j is the n-D spatial index over :math:`W`, I is the `input` and k is the coordinate of the center of W, specified by `origin` in the input parameters. Examples -------- Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, because in this case borders (i.e. where the `weights` kernel, centered on any one value, extends beyond an edge of `input`. >>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) >>> from scipy import ndimage >>> ndimage.convolve(a, k, mode='constant', cval=0.0) array([[11, 10, 7, 4], [10, 3, 11, 11], [15, 12, 14, 7], [12, 3, 7, 0]]) Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` with 1.0's (and then extracting only the original region of the result). >>> ndimage.convolve(a, k, mode='constant', cval=1.0) array([[13, 11, 8, 7], [11, 3, 11, 14], [16, 12, 14, 10], [15, 6, 10, 5]]) With ``mode='reflect'`` (the default), outer values are reflected at the edge of `input` to fill in missing values. >>> b = np.array([[2, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) >>> ndimage.convolve(b, k, mode='reflect') array([[5, 0, 0], [3, 0, 0], [1, 0, 0]]) This includes diagonally at the corners. >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) >>> ndimage.convolve(b, k) array([[4, 2, 0], [3, 2, 0], [1, 1, 0]]) With ``mode='nearest'``, the single nearest value in to an edge in `input` is repeated as many times as needed to match the overlapping `weights`. >>> c = np.array([[2, 0, 1], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0]]) >>> ndimage.convolve(c, k, mode='nearest') array([[7, 0, 3], [5, 0, 2], [3, 0, 1]]) """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, True) @docfiller def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of given size. Parameters ---------- %(input)s size : int length of uniform filter %(axis)s %(output)s %(mode)s %(cval)s %(origin)s """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.uniform_filter1d(input, size, axis, output, mode, cval, origin) return return_value @docfiller def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0, origin=0): """Multi-dimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode)s %(cval)s %(origin)s Notes ----- The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) sizes = _ni_support._normalize_sequence(size, input.ndim) origins = _ni_support._normalize_sequence(origin, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if len(axes) > 0: for axis, size, origin in axes: uniform_filter1d(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] return return_value @docfiller def minimum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional minimum filter along the given axis. The lines of the array along the given axis are filtered with a minimum filter of given size. Parameters ---------- %(input)s size : int length along which to calculate 1D minimum %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Notes ----- This function implements the MINLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 1) return return_value @docfiller def maximum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional maximum filter along the given axis. The lines of the array along the given axis are filtered with a maximum filter of given size. Parameters ---------- %(input)s size : int Length along which to calculate the 1-D maximum. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- maximum1d : ndarray, None Maximum-filtered array with same shape as input. None if `output` is not None Notes ----- This function implements the MAXLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 0) return return_value def _min_or_max_filter(input, size, footprint, structure, output, mode, cval, origin, minimum): if structure is None: if footprint is None: if size is None: raise RuntimeError("no footprint provided") separable = True else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) if numpy.alltrue(numpy.ravel(footprint), axis=0): size = footprint.shape footprint = None separable = True else: separable = False else: structure = numpy.asarray(structure, dtype=numpy.float64) separable = False if footprint is None: footprint = numpy.ones(structure.shape, bool) else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) origins = _ni_support._normalize_sequence(origin, input.ndim) if separable: sizes = _ni_support._normalize_sequence(size, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if minimum: filter_ = minimum_filter1d else: filter_ = maximum_filter1d if len(axes) > 0: for axis, size, origin in axes: filter_(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] else: fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() if structure is not None: if len(structure.shape) != input.ndim: raise RuntimeError('structure array has incorrect shape') if not structure.flags.contiguous: structure = structure.copy() mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter(input, footprint, structure, output, mode, cval, origins, minimum) return return_value @docfiller def minimum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional minimum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 1) @docfiller def maximum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional maximum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 0) @docfiller def _rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, operation='rank'): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() filter_size = numpy.where(footprint, 1, 0).sum() if operation == 'median': rank = filter_size // 2 elif operation == 'percentile': percentile = rank if percentile < 0.0: percentile += 100.0 if percentile < 0 or percentile > 100: raise RuntimeError('invalid percentile') if percentile == 100.0: rank = filter_size - 1 else: rank = int(float(filter_size) * percentile / 100.0) if rank < 0: rank += filter_size if rank < 0 or rank >= filter_size: raise RuntimeError('rank not within filter footprint size') if rank == 0: return minimum_filter(input, None, footprint, output, mode, cval, origins) elif rank == filter_size - 1: return maximum_filter(input, None, footprint, output, mode, cval, origins) else: output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.rank_filter(input, rank, footprint, output, mode, cval, origins) return return_value @docfiller def rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional rank filter. Parameters ---------- %(input)s rank : int The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _rank_filter(input, rank, size, footprint, output, mode, cval, origin, 'rank') @docfiller def median_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """ Calculates a multidimensional median filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- median_filter : ndarray Return of same shape as `input`. """ return _rank_filter(input, 0, size, footprint, output, mode, cval, origin, 'median') @docfiller def percentile_filter(input, percentile, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional percentile filter. Parameters ---------- %(input)s percentile : scalar The percentile parameter may be less then zero, i.e., percentile = -20 equals percentile = 80 %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _rank_filter(input, percentile, size, footprint, output, mode, cval, origin, 'percentile') @docfiller def generic_filter1d(input, function, filter_size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords = None): """Calculate a one-dimensional filter along the given axis. `generic_filter1d` iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result. Parameters ---------- %(input)s function : callable Function to apply along given axis. filter_size : scalar Length of the filter. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) if filter_size < 1: raise RuntimeError('invalid filter size') axis = _ni_support._check_axis(axis, input.ndim) if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= filter_size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter1d(input, function, filter_size, axis, output, mode, cval, origin, extra_arguments, extra_keywords) return return_value @docfiller def generic_filter(input, function, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords = None): """Calculates a multi-dimensional filter using the given function. At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1D array of double values. Parameters ---------- %(input)s function : callable Function to apply at each element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter(input, function, footprint, output, mode, cval, origins, extra_arguments, extra_keywords) return return_value