"""Base class for sparse matrices""" from __future__ import division, print_function, absolute_import import sys import numpy as np from scipy._lib.six import xrange from .sputils import (isdense, isscalarlike, isintlike, get_sum_dtype, validateaxis) __all__ = ['spmatrix', 'isspmatrix', 'issparse', 'SparseWarning', 'SparseEfficiencyWarning'] class SparseWarning(Warning): pass class SparseFormatWarning(SparseWarning): pass class SparseEfficiencyWarning(SparseWarning): pass # The formats that we might potentially understand. _formats = {'csc': [0, "Compressed Sparse Column"], 'csr': [1, "Compressed Sparse Row"], 'dok': [2, "Dictionary Of Keys"], 'lil': [3, "LInked List"], 'dod': [4, "Dictionary of Dictionaries"], 'sss': [5, "Symmetric Sparse Skyline"], 'coo': [6, "COOrdinate"], 'lba': [7, "Linpack BAnded"], 'egd': [8, "Ellpack-itpack Generalized Diagonal"], 'dia': [9, "DIAgonal"], 'bsr': [10, "Block Sparse Row"], 'msr': [11, "Modified compressed Sparse Row"], 'bsc': [12, "Block Sparse Column"], 'msc': [13, "Modified compressed Sparse Column"], 'ssk': [14, "Symmetric SKyline"], 'nsk': [15, "Nonsymmetric SKyline"], 'jad': [16, "JAgged Diagonal"], 'uss': [17, "Unsymmetric Sparse Skyline"], 'vbr': [18, "Variable Block Row"], 'und': [19, "Undefined"] } # These univariate ufuncs preserve zeros. _ufuncs_with_fixed_point_at_zero = frozenset([ np.sin, np.tan, np.arcsin, np.arctan, np.sinh, np.tanh, np.arcsinh, np.arctanh, np.rint, np.sign, np.expm1, np.log1p, np.deg2rad, np.rad2deg, np.floor, np.ceil, np.trunc, np.sqrt]) MAXPRINT = 50 class spmatrix(object): """ This class provides a base class for all sparse matrices. It cannot be instantiated. Most of the work is provided by subclasses. """ __array_priority__ = 10.1 ndim = 2 def __init__(self, maxprint=MAXPRINT): self._shape = None if self.__class__.__name__ == 'spmatrix': raise ValueError("This class is not intended" " to be instantiated directly.") self.maxprint = maxprint def set_shape(self, shape): shape = tuple(shape) if len(shape) != 2: raise ValueError("Only two-dimensional sparse " "arrays are supported.") try: shape = int(shape[0]), int(shape[1]) # floats, other weirdness except: raise TypeError('invalid shape') if not (shape[0] >= 0 and shape[1] >= 0): raise ValueError('invalid shape') if (self._shape != shape) and (self._shape is not None): try: self = self.reshape(shape) except NotImplementedError: raise NotImplementedError("Reshaping not implemented for %s." % self.__class__.__name__) self._shape = shape def get_shape(self): return self._shape shape = property(fget=get_shape, fset=set_shape) def reshape(self, shape, order='C'): """ Gives a new shape to a sparse matrix without changing its data. Parameters ---------- shape : length-2 tuple of ints The new shape should be compatible with the original shape. order : 'C', optional This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used. Returns ------- reshaped_matrix : `self` with the new dimensions of `shape` See Also -------- np.matrix.reshape : NumPy's implementation of 'reshape' for matrices """ raise NotImplementedError("Reshaping not implemented for %s." % self.__class__.__name__) def astype(self, t): return self.tocsr().astype(t).asformat(self.format) def asfptype(self): """Upcast matrix to a floating point format (if necessary)""" fp_types = ['f', 'd', 'F', 'D'] if self.dtype.char in fp_types: return self else: for fp_type in fp_types: if self.dtype <= np.dtype(fp_type): return self.astype(fp_type) raise TypeError('cannot upcast [%s] to a floating ' 'point format' % self.dtype.name) def __iter__(self): for r in xrange(self.shape[0]): yield self[r, :] def getmaxprint(self): return self.maxprint def count_nonzero(self): """Number of non-zero entries, equivalent to np.count_nonzero(a.toarray()) Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data. """ raise NotImplementedError("count_nonzero not implemented for %s." % self.__class__.__name__) def getnnz(self, axis=None): """Number of stored values, including explicit zeros. Parameters ---------- axis : None, 0, or 1 Select between the number of values across the whole matrix, in each column, or in each row. See also -------- count_nonzero : Number of non-zero entries """ raise NotImplementedError("getnnz not implemented for %s." % self.__class__.__name__) @property def nnz(self): """Number of stored values, including explicit zeros. See also -------- count_nonzero : Number of non-zero entries """ return self.getnnz() def getformat(self): return getattr(self, 'format', 'und') def __repr__(self): _, format_name = _formats[self.getformat()] return "<%dx%d sparse matrix of type '%s'\n" \ "\twith %d stored elements in %s format>" % \ (self.shape + (self.dtype.type, self.nnz, format_name)) def __str__(self): maxprint = self.getmaxprint() A = self.tocoo() # helper function, outputs "(i,j) v" def tostr(row, col, data): triples = zip(list(zip(row, col)), data) return '\n'.join([(' %s\t%s' % t) for t in triples]) if self.nnz > maxprint: half = maxprint // 2 out = tostr(A.row[:half], A.col[:half], A.data[:half]) out += "\n :\t:\n" half = maxprint - maxprint//2 out += tostr(A.row[-half:], A.col[-half:], A.data[-half:]) else: out = tostr(A.row, A.col, A.data) return out def __bool__(self): # Simple -- other ideas? if self.shape == (1, 1): return self.nnz != 0 else: raise ValueError("The truth value of an array with more than one " "element is ambiguous. Use a.any() or a.all().") __nonzero__ = __bool__ # What should len(sparse) return? For consistency with dense matrices, # perhaps it should be the number of rows? But for some uses the number of # non-zeros is more important. For now, raise an exception! def __len__(self): raise TypeError("sparse matrix length is ambiguous; use getnnz()" " or shape[0]") def asformat(self, format): """Return this matrix in a given sparse format Parameters ---------- format : {string, None} desired sparse matrix format - None for no format conversion - "csr" for csr_matrix format - "csc" for csc_matrix format - "lil" for lil_matrix format - "dok" for dok_matrix format and so on """ if format is None or format == self.format: return self else: return getattr(self, 'to' + format)() ################################################################### # NOTE: All arithmetic operations use csr_matrix by default. # Therefore a new sparse matrix format just needs to define a # .tocsr() method to provide arithmetic support. Any of these # methods can be overridden for efficiency. #################################################################### def multiply(self, other): """Point-wise multiplication by another matrix """ return self.tocsr().multiply(other) def maximum(self, other): return self.tocsr().maximum(other) def minimum(self, other): return self.tocsr().minimum(other) def dot(self, other): """Ordinary dot product Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) >>> v = np.array([1, 0, -1]) >>> A.dot(v) array([ 1, -3, -1], dtype=int64) """ return self * other def power(self, n, dtype=None): return self.tocsr().power(n, dtype=dtype) def __eq__(self, other): return self.tocsr().__eq__(other) def __ne__(self, other): return self.tocsr().__ne__(other) def __lt__(self, other): return self.tocsr().__lt__(other) def __gt__(self, other): return self.tocsr().__gt__(other) def __le__(self, other): return self.tocsr().__le__(other) def __ge__(self, other): return self.tocsr().__ge__(other) def __abs__(self): return abs(self.tocsr()) def __add__(self, other): # self + other return self.tocsr().__add__(other) def __radd__(self, other): # other + self return self.tocsr().__radd__(other) def __sub__(self, other): # self - other # note: this can't be replaced by self + (-other) for unsigned types return self.tocsr().__sub__(other) def __rsub__(self, other): # other - self return self.tocsr().__rsub__(other) def __mul__(self, other): """interpret other and call one of the following self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix() """ M, N = self.shape if other.__class__ is np.ndarray: # Fast path for the most common case if other.shape == (N,): return self._mul_vector(other) elif other.shape == (N, 1): return self._mul_vector(other.ravel()).reshape(M, 1) elif other.ndim == 2 and other.shape[0] == N: return self._mul_multivector(other) if isscalarlike(other): # scalar value return self._mul_scalar(other) if issparse(other): if self.shape[1] != other.shape[0]: raise ValueError('dimension mismatch') return self._mul_sparse_matrix(other) try: other.shape except AttributeError: # If it's a list or whatever, treat it like a matrix other_a = np.asanyarray(other) if other_a.ndim == 0 and other_a.dtype == np.object_: # Not interpretable as an array; return NotImplemented so that # other's __rmul__ can kick in if that's implemented. return NotImplemented other = other_a if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1: # dense row or column vector if other.shape != (N,) and other.shape != (N, 1): raise ValueError('dimension mismatch') result = self._mul_vector(np.ravel(other)) if isinstance(other, np.matrix): result = np.asmatrix(result) if other.ndim == 2 and other.shape[1] == 1: # If 'other' was an (nx1) column vector, reshape the result result = result.reshape(-1, 1) return result elif other.ndim == 2: ## # dense 2D array or matrix ("multivector") if other.shape[0] != self.shape[1]: raise ValueError('dimension mismatch') result = self._mul_multivector(np.asarray(other)) if isinstance(other, np.matrix): result = np.asmatrix(result) return result else: raise ValueError('could not interpret dimensions') # by default, use CSR for __mul__ handlers def _mul_scalar(self, other): return self.tocsr()._mul_scalar(other) def _mul_vector(self, other): return self.tocsr()._mul_vector(other) def _mul_multivector(self, other): return self.tocsr()._mul_multivector(other) def _mul_sparse_matrix(self, other): return self.tocsr()._mul_sparse_matrix(other) def __rmul__(self, other): # other * self if isscalarlike(other): return self.__mul__(other) else: # Don't use asarray unless we have to try: tr = other.transpose() except AttributeError: tr = np.asarray(other).transpose() return (self.transpose() * tr).transpose() ##################################### # matmul (@) operator (Python 3.5+) # ##################################### def __matmul__(self, other): if isscalarlike(other): raise ValueError("Scalar operands are not allowed, " "use '*' instead") return self.__mul__(other) def __rmatmul__(self, other): if isscalarlike(other): raise ValueError("Scalar operands are not allowed, " "use '*' instead") return self.__rmul__(other) #################### # Other Arithmetic # #################### def _divide(self, other, true_divide=False, rdivide=False): if isscalarlike(other): if rdivide: if true_divide: return np.true_divide(other, self.todense()) else: return np.divide(other, self.todense()) if true_divide and np.can_cast(self.dtype, np.float_): return self.astype(np.float_)._mul_scalar(1./other) else: r = self._mul_scalar(1./other) scalar_dtype = np.asarray(other).dtype if (np.issubdtype(self.dtype, np.integer) and np.issubdtype(scalar_dtype, np.integer)): return r.astype(self.dtype) else: return r elif isdense(other): if not rdivide: if true_divide: return np.true_divide(self.todense(), other) else: return np.divide(self.todense(), other) else: if true_divide: return np.true_divide(other, self.todense()) else: return np.divide(other, self.todense()) elif isspmatrix(other): if rdivide: return other._divide(self, true_divide, rdivide=False) self_csr = self.tocsr() if true_divide and np.can_cast(self.dtype, np.float_): return self_csr.astype(np.float_)._divide_sparse(other) else: return self_csr._divide_sparse(other) else: return NotImplemented def __truediv__(self, other): return self._divide(other, true_divide=True) def __div__(self, other): # Always do true division return self._divide(other, true_divide=True) def __rtruediv__(self, other): # Implementing this as the inverse would be too magical -- bail out return NotImplemented def __rdiv__(self, other): # Implementing this as the inverse would be too magical -- bail out return NotImplemented def __neg__(self): return -self.tocsr() def __iadd__(self, other): return NotImplemented def __isub__(self, other): return NotImplemented def __imul__(self, other): return NotImplemented def __idiv__(self, other): return self.__itruediv__(other) def __itruediv__(self, other): return NotImplemented def __pow__(self, other): if self.shape[0] != self.shape[1]: raise TypeError('matrix is not square') if isintlike(other): other = int(other) if other < 0: raise ValueError('exponent must be >= 0') if other == 0: from .construct import eye return eye(self.shape[0], dtype=self.dtype) elif other == 1: return self.copy() else: tmp = self.__pow__(other//2) if (other % 2): return self * tmp * tmp else: return tmp * tmp elif isscalarlike(other): raise ValueError('exponent must be an integer') else: return NotImplemented def __getattr__(self, attr): if attr == 'A': return self.toarray() elif attr == 'T': return self.transpose() elif attr == 'H': return self.getH() elif attr == 'real': return self._real() elif attr == 'imag': return self._imag() elif attr == 'size': return self.getnnz() else: raise AttributeError(attr + " not found") def transpose(self, axes=None, copy=False): """ Reverses the dimensions of the sparse matrix. Parameters ---------- axes : None, optional This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value. copy : bool, optional Indicates whether or not attributes of `self` should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used. Returns ------- p : `self` with the dimensions reversed. See Also -------- np.matrix.transpose : NumPy's implementation of 'transpose' for matrices """ return self.tocsr().transpose(axes=axes, copy=copy) def conj(self): return self.tocsr().conj() def conjugate(self): return self.conj() # Renamed conjtranspose() -> getH() for compatibility with dense matrices def getH(self): return self.transpose().conj() def _real(self): return self.tocsr()._real() def _imag(self): return self.tocsr()._imag() def nonzero(self): """nonzero indices Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix. Examples -------- >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]]) >>> A.nonzero() (array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2])) """ # convert to COOrdinate format A = self.tocoo() nz_mask = A.data != 0 return (A.row[nz_mask], A.col[nz_mask]) def getcol(self, j): """Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector). """ # Spmatrix subclasses should override this method for efficiency. # Post-multiply by a (n x 1) column vector 'a' containing all zeros # except for a_j = 1 from .csc import csc_matrix n = self.shape[1] if j < 0: j += n if j < 0 or j >= n: raise IndexError("index out of bounds") col_selector = csc_matrix(([1], [[j], [0]]), shape=(n, 1), dtype=self.dtype) return self * col_selector def getrow(self, i): """Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector). """ # Spmatrix subclasses should override this method for efficiency. # Pre-multiply by a (1 x m) row vector 'a' containing all zeros # except for a_i = 1 from .csr import csr_matrix m = self.shape[0] if i < 0: i += m if i < 0 or i >= m: raise IndexError("index out of bounds") row_selector = csr_matrix(([1], [[0], [i]]), shape=(1, m), dtype=self.dtype) return row_selector * self # def __array__(self): # return self.toarray() def todense(self, order=None, out=None): """ Return a dense matrix representation of this matrix. Parameters ---------- order : {'C', 'F'}, optional Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', indicating the NumPy default of C-ordered. Cannot be specified in conjunction with the `out` argument. out : ndarray, 2-dimensional, optional If specified, uses this array (or `numpy.matrix`) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. Returns ------- arr : numpy.matrix, 2-dimensional A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed and was an array (rather than a `numpy.matrix`), it will be filled with the appropriate values and returned wrapped in a `numpy.matrix` object that shares the same memory. """ return np.asmatrix(self.toarray(order=order, out=out)) def toarray(self, order=None, out=None): """ Return a dense ndarray representation of this matrix. Parameters ---------- order : {'C', 'F'}, optional Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', indicating the NumPy default of C-ordered. Cannot be specified in conjunction with the `out` argument. out : ndarray, 2-dimensional, optional If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered). Returns ------- arr : ndarray, 2-dimensional An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values. """ return self.tocoo(copy=False).toarray(order=order, out=out) # Any sparse matrix format deriving from spmatrix must define one of # tocsr or tocoo. The other conversion methods may be implemented for # efficiency, but are not required. def tocsr(self, copy=False): """Convert this matrix to Compressed Sparse Row format. With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix. """ return self.tocoo(copy=copy).tocsr(copy=False) def todok(self, copy=False): """Convert this matrix to Dictionary Of Keys format. With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix. """ return self.tocoo(copy=copy).todok(copy=False) def tocoo(self, copy=False): """Convert this matrix to COOrdinate format. With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix. """ return self.tocsr(copy=False).tocoo(copy=copy) def tolil(self, copy=False): """Convert this matrix to LInked List format. With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix. """ return self.tocsr(copy=False).tolil(copy=copy) def todia(self, copy=False): """Convert this matrix to sparse DIAgonal format. With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix. """ return self.tocoo(copy=copy).todia(copy=False) def tobsr(self, blocksize=None, copy=False): """Convert this matrix to Block Sparse Row format. With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix. When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix. """ return self.tocsr(copy=False).tobsr(blocksize=blocksize, copy=copy) def tocsc(self, copy=False): """Convert this matrix to Compressed Sparse Column format. With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix. """ return self.tocsr(copy=copy).tocsc(copy=False) def copy(self): """Returns a copy of this matrix. No data/indices will be shared between the returned value and current matrix. """ return self.__class__(self, copy=True) def sum(self, axis=None, dtype=None, out=None): """ Sum the matrix elements over a given axis. Parameters ---------- axis : {-2, -1, 0, 1, None} optional Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e. `axis` = `None`). dtype : dtype, optional The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. .. versionadded: 0.18.0 out : np.matrix, optional Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. .. versionadded: 0.18.0 Returns ------- sum_along_axis : np.matrix A matrix with the same shape as `self`, with the specified axis removed. See Also -------- np.matrix.sum : NumPy's implementation of 'sum' for matrices """ validateaxis(axis) # We use multiplication by a matrix of ones to achieve this. # For some sparse matrix formats more efficient methods are # possible -- these should override this function. m, n = self.shape # Mimic numpy's casting. res_dtype = get_sum_dtype(self.dtype) if axis is None: # sum over rows and columns return (self * np.asmatrix(np.ones( (n, 1), dtype=res_dtype))).sum( dtype=dtype, out=out) if axis < 0: axis += 2 # axis = 0 or 1 now if axis == 0: # sum over columns ret = np.asmatrix(np.ones( (1, m), dtype=res_dtype)) * self else: # sum over rows ret = self * np.asmatrix( np.ones((n, 1), dtype=res_dtype)) if out is not None and out.shape != ret.shape: raise ValueError("dimensions do not match") return ret.sum(axis=(), dtype=dtype, out=out) def mean(self, axis=None, dtype=None, out=None): """ Compute the arithmetic mean along the specified axis. Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. `float64` intermediate and return values are used for integer inputs. Parameters ---------- axis : {-2, -1, 0, 1, None} optional Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e. `axis` = `None`). dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is `float64`; for floating point inputs, it is the same as the input dtype. .. versionadded: 0.18.0 out : np.matrix, optional Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. .. versionadded: 0.18.0 Returns ------- m : np.matrix See Also -------- np.matrix.mean : NumPy's implementation of 'mean' for matrices """ def _is_integral(dtype): return (np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.bool_)) validateaxis(axis) res_dtype = self.dtype.type integral = _is_integral(self.dtype) # output dtype if dtype is None: if integral: res_dtype = np.float64 else: res_dtype = np.dtype(dtype).type # intermediate dtype for summation inter_dtype = np.float64 if integral else res_dtype inter_self = self.astype(inter_dtype) if axis is None: return (inter_self / np.array( self.shape[0] * self.shape[1]))\ .sum(dtype=res_dtype, out=out) if axis < 0: axis += 2 # axis = 0 or 1 now if axis == 0: return (inter_self * (1.0 / self.shape[0])).sum( axis=0, dtype=res_dtype, out=out) else: return (inter_self * (1.0 / self.shape[1])).sum( axis=1, dtype=res_dtype, out=out) def diagonal(self): """Returns the main diagonal of the matrix """ # TODO support k != 0 return self.tocsr().diagonal() def setdiag(self, values, k=0): """ Set diagonal or off-diagonal elements of the array. Parameters ---------- values : array_like New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values if longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it. k : int, optional Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal). """ M, N = self.shape if (k > 0 and k >= N) or (k < 0 and -k >= M): raise ValueError("k exceeds matrix dimensions") self._setdiag(np.asarray(values), k) def _setdiag(self, values, k): M, N = self.shape if k < 0: if values.ndim == 0: # broadcast max_index = min(M+k, N) for i in xrange(max_index): self[i - k, i] = values else: max_index = min(M+k, N, len(values)) if max_index <= 0: return for i, v in enumerate(values[:max_index]): self[i - k, i] = v else: if values.ndim == 0: # broadcast max_index = min(M, N-k) for i in xrange(max_index): self[i, i + k] = values else: max_index = min(M, N-k, len(values)) if max_index <= 0: return for i, v in enumerate(values[:max_index]): self[i, i + k] = v def _process_toarray_args(self, order, out): if out is not None: if order is not None: raise ValueError('order cannot be specified if out ' 'is not None') if out.shape != self.shape or out.dtype != self.dtype: raise ValueError('out array must be same dtype and shape as ' 'sparse matrix') out[...] = 0. return out else: return np.zeros(self.shape, dtype=self.dtype, order=order) def __numpy_ufunc__(self, func, method, pos, inputs, **kwargs): """Method for compatibility with NumPy's ufuncs and dot functions. """ if any(not isinstance(x, spmatrix) and np.asarray(x).dtype == object for x in inputs): # preserve previous behavior with object arrays with_self = list(inputs) with_self[pos] = np.asarray(self, dtype=object) return getattr(func, method)(*with_self, **kwargs) out = kwargs.pop('out', None) if method != '__call__' or kwargs: return NotImplemented without_self = list(inputs) del without_self[pos] without_self = tuple(without_self) if func is np.multiply: result = self.multiply(*without_self) elif func is np.add: result = self.__add__(*without_self) elif func is np.dot: if pos == 0: result = self.__mul__(inputs[1]) else: result = self.__rmul__(inputs[0]) elif func is np.subtract: if pos == 0: result = self.__sub__(inputs[1]) else: result = self.__rsub__(inputs[0]) elif func is np.divide: true_divide = (sys.version_info[0] >= 3) rdivide = (pos == 1) result = self._divide(*without_self, true_divide=true_divide, rdivide=rdivide) elif func is np.true_divide: rdivide = (pos == 1) result = self._divide(*without_self, true_divide=True, rdivide=rdivide) elif func is np.maximum: result = self.maximum(*without_self) elif func is np.minimum: result = self.minimum(*without_self) elif func is np.absolute: result = abs(self) elif func in _ufuncs_with_fixed_point_at_zero: func_name = func.__name__ if hasattr(self, func_name): result = getattr(self, func_name)() else: result = getattr(self.tocsr(), func_name)() else: return NotImplemented if out is not None: if not isinstance(out, spmatrix) and isinstance(result, spmatrix): out[...] = result.todense() else: out[...] = result result = out return result def isspmatrix(x): return isinstance(x, spmatrix) issparse = isspmatrix