from __future__ import division import numpy as np from numpy.testing import run_module_suite from scipy.sparse import csr_matrix from sklearn.utils.testing import (assert_array_equal, assert_almost_equal, assert_false, assert_raises, assert_equal) from sklearn.feature_selection.mutual_info_ import ( mutual_info_regression, mutual_info_classif, _compute_mi) def test_compute_mi_dd(): # In discrete case computations are straightforward and can be done # by hand on given vectors. x = np.array([0, 1, 1, 0, 0]) y = np.array([1, 0, 0, 0, 1]) H_x = H_y = -(3/5) * np.log(3/5) - (2/5) * np.log(2/5) H_xy = -1/5 * np.log(1/5) - 2/5 * np.log(2/5) - 2/5 * np.log(2/5) I_xy = H_x + H_y - H_xy assert_almost_equal(_compute_mi(x, y, True, True), I_xy) def test_compute_mi_cc(): # For two continuous variables a good approach is to test on bivariate # normal distribution, where mutual information is known. # Mean of the distribution, irrelevant for mutual information. mean = np.zeros(2) # Setup covariance matrix with correlation coeff. equal 0.5. sigma_1 = 1 sigma_2 = 10 corr = 0.5 cov = np.array([ [sigma_1**2, corr * sigma_1 * sigma_2], [corr * sigma_1 * sigma_2, sigma_2**2] ]) # True theoretical mutual information. I_theory = (np.log(sigma_1) + np.log(sigma_2) - 0.5 * np.log(np.linalg.det(cov))) np.random.seed(0) Z = np.random.multivariate_normal(mean, cov, size=1000) x, y = Z[:, 0], Z[:, 1] # Theory and computed values won't be very close, assert that the # first figures after decimal point match. for n_neighbors in [3, 5, 7]: I_computed = _compute_mi(x, y, False, False, n_neighbors) assert_almost_equal(I_computed, I_theory, 1) def test_compute_mi_cd(): # To test define a joint distribution as follows: # p(x, y) = p(x) p(y | x) # X ~ Bernoulli(p) # (Y | x = 0) ~ Uniform(-1, 1) # (Y | x = 1) ~ Uniform(0, 2) # Use the following formula for mutual information: # I(X; Y) = H(Y) - H(Y | X) # Two entropies can be computed by hand: # H(Y) = -(1-p)/2 * ln((1-p)/2) - p/2*log(p/2) - 1/2*log(1/2) # H(Y | X) = ln(2) # Now we need to implement sampling from out distribution, which is # done easily using conditional distribution logic. n_samples = 1000 np.random.seed(0) for p in [0.3, 0.5, 0.7]: x = np.random.uniform(size=n_samples) > p y = np.empty(n_samples) mask = x == 0 y[mask] = np.random.uniform(-1, 1, size=np.sum(mask)) y[~mask] = np.random.uniform(0, 2, size=np.sum(~mask)) I_theory = -0.5 * ((1 - p) * np.log(0.5 * (1 - p)) + p * np.log(0.5 * p) + np.log(0.5)) - np.log(2) # Assert the same tolerance. for n_neighbors in [3, 5, 7]: I_computed = _compute_mi(x, y, True, False, n_neighbors) assert_almost_equal(I_computed, I_theory, 1) def test_compute_mi_cd_unique_label(): # Test that adding unique label doesn't change MI. n_samples = 100 x = np.random.uniform(size=n_samples) > 0.5 y = np.empty(n_samples) mask = x == 0 y[mask] = np.random.uniform(-1, 1, size=np.sum(mask)) y[~mask] = np.random.uniform(0, 2, size=np.sum(~mask)) mi_1 = _compute_mi(x, y, True, False) x = np.hstack((x, 2)) y = np.hstack((y, 10)) mi_2 = _compute_mi(x, y, True, False) assert_equal(mi_1, mi_2) # We are going test that feature ordering by MI matches our expectations. def test_mutual_info_classif_discrete(): X = np.array([[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]]) y = np.array([0, 1, 2, 2, 1]) # Here X[:, 0] is the most informative feature, and X[:, 1] is weakly # informative. mi = mutual_info_classif(X, y, discrete_features=True) assert_array_equal(np.argsort(-mi), np.array([0, 2, 1])) def test_mutual_info_regression(): # We generate sample from multivariate normal distribution, using # transformation from initially uncorrelated variables. The zero # variables after transformation is selected as the target vector, # it has the strongest correlation with the variable 2, and # the weakest correlation with the variable 1. T = np.array([ [1, 0.5, 2, 1], [0, 1, 0.1, 0.0], [0, 0.1, 1, 0.1], [0, 0.1, 0.1, 1] ]) cov = T.dot(T.T) mean = np.zeros(4) np.random.seed(0) Z = np.random.multivariate_normal(mean, cov, size=1000) X = Z[:, 1:] y = Z[:, 0] mi = mutual_info_regression(X, y, random_state=0) assert_array_equal(np.argsort(-mi), np.array([1, 2, 0])) def test_mutual_info_classif_mixed(): # Here the target is discrete and there are two continuous and one # discrete feature. The idea of this test is clear from the code. np.random.seed(0) X = np.random.rand(1000, 3) X[:, 1] += X[:, 0] y = ((0.5 * X[:, 0] + X[:, 2]) > 0.5).astype(int) X[:, 2] = X[:, 2] > 0.5 mi = mutual_info_classif(X, y, discrete_features=[2], random_state=0) assert_array_equal(np.argsort(-mi), [2, 0, 1]) def test_mutual_info_options(): X = np.array([[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]], dtype=float) y = np.array([0, 1, 2, 2, 1], dtype=float) X_csr = csr_matrix(X) for mutual_info in (mutual_info_regression, mutual_info_classif): assert_raises(ValueError, mutual_info_regression, X_csr, y, discrete_features=False) mi_1 = mutual_info(X, y, discrete_features='auto', random_state=0) mi_2 = mutual_info(X, y, discrete_features=False, random_state=0) mi_3 = mutual_info(X_csr, y, discrete_features='auto', random_state=0) mi_4 = mutual_info(X_csr, y, discrete_features=True, random_state=0) assert_array_equal(mi_1, mi_2) assert_array_equal(mi_3, mi_4) assert_false(np.allclose(mi_1, mi_3)) if __name__ == '__main__': run_module_suite()