"""Testing for Gaussian process classification """ # Author: Jan Hendrik Metzen # License: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils.testing import (assert_true, assert_greater, assert_almost_equal, assert_array_equal) def f(x): return np.sin(x) X = np.atleast_2d(np.linspace(0, 10, 30)).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = np.array(f(X).ravel() > 0, dtype=int) fX = f(X).ravel() y_mc = np.empty(y.shape, dtype=int) # multi-class y_mc[fX < -0.35] = 0 y_mc[(fX >= -0.35) & (fX < 0.35)] = 1 y_mc[fX > 0.35] = 2 fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=0.1), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))] def test_predict_consistent(): # Check binary predict decision has also predicted probability above 0.5. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) def test_lml_improving(): # Test that hyperparameter-tuning improves log-marginal likelihood. for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): # Test that lml of optimized kernel is stored correctly. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7) def test_converged_to_local_maximum(): # Test that we are in local maximum after hyperparameter-optimization. for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpc.log_marginal_likelihood(gpc.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))) def test_lml_gradient(): # Compare analytic and numeric gradient of log marginal likelihood. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_custom_optimizer(): # Test that GPC can use externally defined optimizers. # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer) gpc.fit(X, y_mc) # Checks that optimizer improved marginal likelihood assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_multi_class(): # Test GPC for multi-class classification problems. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) y_prob = gpc.predict_proba(X2) assert_almost_equal(y_prob.sum(1), 1) y_pred = gpc.predict(X2) assert_array_equal(np.argmax(y_prob, 1), y_pred) def test_multi_class_n_jobs(): # Test that multi-class GPC produces identical results with n_jobs>1. for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2) gpc_2.fit(X, y_mc) y_prob = gpc.predict_proba(X2) y_prob_2 = gpc_2.predict_proba(X2) assert_almost_equal(y_prob, y_prob_2)