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Abstract. In this paper, we discuss the related information theoreti-
cal association measures of mutual information and pointwise mutual
information, in the context of collocation extraction. We introduce nor-
malized variants of these measures in order to make them more easily
interpretable and at the same time less sensitive to occurrence frequency.
We also provide a small empirical study to give more insight into the be-
haviour of these new measures in a collocation extraction setup.

1 Introduction

In collocation extraction, the task is to identify in a corpus combinations of words
that show some idiosyncrasy in their linguistic distribution. This idiosyncrasy
may be reduced semantic compositionality, reduced syntactic modifiability or
simply a sense that the combination is habitual or even fixed. Typically but
not exclusively, this task concentrates on two-part multi-word units and involves
comparing the statistical distribution of the combination to the distribution of
its constituents through an association measure. This measure is used to rank
candidates extracted from a corpus and the top ranking candidates are then
selected for further consideration as collocations.1

There are literally dozens of association measures available and an impor-
tant part of the existing collocation extraction literature has consisted of finding
new and more effective measures. For an extreme example see Pecina (2008a),
who in one paper compares 55 different (existing) association measures and in
addition several machine learning techniques for collocation extraction. A recent
development in the collocation literature is the creation and exploitation of gold
standards to evaluate collocation extraction methods – something which is for
instance standard practice in information retrieval. Evaluation of a method, say,
a certain association measure, involves ranking the data points in the gold stan-
dard after this measure. An effective method is then one that ranks the actual
collocations in this list above the non-collocations. Four such resources, compiled
1 In the context of this paper, we will not attempt a more profound definition of the

concept of collocation and the related task of collocation extraction. For this we
refer the interested reader to Manning and Schütze (1999, Ch. 5) and especially Ev-
ert (2007). A comprehensive study of all aspects of collocation extraction with a focus
on mathematical properties of association measures and statistical methodology is
Evert (2005).



for the shared task of the MWE 2008 workshop, are described in Baldwin (2008),
Evert (2008a), Krenn (2008), and Pecina (2008b).

One of the lessons taught by systematic evaluation of association measures
against different gold standards is that there is not one association measure that
is best in all situations. Rather, different target collocations may be found most
effectively with different methods and measures. It is therefore useful to have
access to a wide array of association measures coupled with an understanding of
their behaviour if we want to do collocation extraction. As Evert (2007, Sect. 6),
in discussing the selection of an association measure, points out, choosing the
best association measure for the job involves empirical evaluation as well as a
theoretical understanding of the measure.

In this paper, we add to the large body of collocation extraction literature
by introducing two new association measures, both normalized variants of the
commonly used information theoretical measures of mutual information and
pointwise mutual information. The introduction of the normalized variants is
motivated by the desire to (a) use association measures whose values have a fixed
interpretation; and (b), in the case of pointwise mutual information, reduce a
known sensitivity for low frequency data. Since it is important to understand
the nature of an association measure, we will discuss some theoretical properties
of the new measures and try to gain insight in the relation between them and
the original measures through a short empirical study.

The rest of this paper is structured as follows: Section 2 discusses mutual
information and pointwise mutual information. We then introduce their normal-
ized variants (Sect. 3). Finally, we present an empirical study of the effectiveness
of these normalized variants (Sect. 4).

2 Mutual information

2.1 Definitions

Mutual information (MI) is a measure of the information overlap between two
random variables. In this section I will review definitions and properties of MI.
A textbook introduction can be found in Cover and Thomas (1991). Readers
familiar with the topic may want to skip to Sect. 3.

The MI between random variables X and Y , whose values have marginal
probabilities p(x) and p(y), and joint probabilities p(x, y), is defined as:2

I(X; Y ) =
∑
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
. (1)

2 In this paper, I will always use the natural logarithm. Changing the base of the
logarithm changes the unit of measurement of information, but this is not relevant in
the context of this paper. Further, capital variable names refer to random variables,
whereas lowercase ones refer to the values of their capitalized counterparts. Finally,
0 · ln 0 is defined to be 0, which means that in a contingency table, cells with zero
counts/probability do not contribute to MI, entropy, etc.



The information overlap between X and Y is 0 when the two variables are
independent, as p(x)p(y) = p(x, y). When X determines Y , I(X; Y ) = H(Y ),
where H(Y ) is the entropy of, or lack of information about, Y , defined as:

H(Y ) = −
∑

y

p(y) ln p(y). (2)

When X and Y are perfectly correlated (they determine each other), I(X; Y )
reaches its maximum of H(X) = H(Y ) = H(X, Y ), where H(X, Y ) is the joint
entropy of X and Y , which we get by replacing the marginal distribution in (2)
with the joint distribution p(x, y).

Other ways to look at MI is as a sum of entropies (3) or as the expected or
average value of pointwise mutual information (4).

I(X; Y ) = H(X) + H(Y )−H(X,Y ) (3)
I(X; Y ) = Ep(X,Y ) [i(X, Y )] (4)

=
∑
x,y

p(x, y) i(x, y)

i(x, y) = ln
p(x, y)

p(x)p(y)
(5)

Pointwise mutual information (PMI, 5) is a measure of how much the actual
probability of a particular co-occurrence of events p(x, y) differs from what we
would expect it to be on the basis of the probabilities of the individual events
and the assumption of independence p(x)p(y). Note that even though PMI may
be negative or positive, its expected outcome over all joint events (i.e., MI) is
positive.

2.2 Mutual information in collocation extraction

Mutual information can be used to perform collocation extraction by considering
the MI of the indicator variables of the two parts of the potential collocation.3

In Table 1, I have given counts and probabilities (maximum likelihood esti-
mates: p = f/N) for the collocation candidate Mr President, extracted from
the Europarl corpus (Koehn, 2005). The MI between the two indicator vari-
ables I(Lmr; Rpresident) is in this case 0.0093. The Europarl sample consists of
about 20k bigramme types with frequencies above 20. An MI of 0.0093 puts Mr
President at rank 2 when these types are sorted after MI.

For a recent application of MI in collocation extraction see Ramish et al. (2008).
More common than MI as defined above is the use of the test statistic for the
log-likelihood ratio G2, first proposed as a collocation extraction measure in

3 In this paper, we shall use two-word collocations as our running example. The indi-
cator variable Lw maps to yes when the leftmost word in a candidate is w and to
no otherwise. Similarly for Rw and the rightmost word.



Table 1. Counts (l) and MLE probabilities (r) for the bigramme Mr President in a
fragment of the English part of the Europarl corpus.

Rpresident

Lmr yes no Total

yes 6 899 3 849 10 748
no 8 559 3 459 350 3 467 909

Total 15 458 3 463 199 3 478 657

Rpresident

Lmr yes no Total

yes .0020 .0011 .0031
no .0025 .9944 .9969

Total .0044 .9956

Dunning (1993). For G2 it has been observed that it is equivalent to MI in
collocation extraction (e.g., Evert, 2005, Sect. 3.1.7).4

Pointwise MI is also one of the standard association measures in collocation
extraction. PMI was introduced into lexicography by Church and Hanks (1990).
Confusingly, in the computational linguistic literature, PMI is often referred
to as simply MI, whereas in the information theoretic literature, MI refers to
the averaged measure. In our example in Table 1, the bigramme Mr President
receives a score of i(Lmr =yes, Rpresident =yes) = 4.972. In our Europarl sample
of 20k types, Mr President comes 1573th in terms of PMI.

Although MI and PMI are theoretically related, their behaviour as association
measures is not very similar. An observation often made about PMI is that low
frequency events receive relatively high scores. For instance, infrequent word
pairs tend to dominate the top of bigramme lists that are ranked after PMI.
One way this behaviour can be understood is by looking at the PMI value of
extreme cases. When two parts of a bigramme only occur together (the indicator
variables of the words are perfectly correlated), we have p(x, y) = p(x) = p(y).
In this situation, PMI has a value of − ln p(x, y). This means that the PMI
of perfectly correlated words is higher when the combination is less frequent.
Even though these facts about the upper bound do not automatically mean
that all low frequency events receive high scores, the upper bound of PMI is
not very intuitive for an association measure.5 Furthermore, the lack of a fixed
upper bound means that by looking at PMI alone, we do not know how close

4 As mentioned, we use association measures to rank candidates. A measure is thus
equivalent to any monotic transformation. G2 and MI differ by a constant factor
2N , where N is the corpus size, if we assume a maximum likelihood estimate for
probabilities (f/N), since

G2 = 2
X
x,y

f(x, y) ln
f(x, y)

fe(x, y)
= 2N

X
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
= 2N ·MI

where the expected frequency fe(x, y) = f(x)/N · f(y)/N ·N .
5 The unintuitive moving upper bound behaviour of PMI is related to the use of a

ratio of probabilities. The statistical measure of effect size relative risk has a similar
problem. Figuratively, there is a ‘probability roof’ that one can’t go through, e.g.,
p(x) can be twice as high as p(y) when p(y) = .05, but not when p(y) = .55. The



a bigramme is to perfect correlation. In contrast, we do know how close it is to
independence, since a completely uncorrelated word pair receives a PMI of 0.

A sensitivity for low frequency material is not necessarily a disadvantage. As
mentioned in the introduction, different collocation extraction tasks may have
different effective association measures. If we look at the MWE 2008 shared task
results (Evert, 2008b), we can conclude that PMI performs relatively well as an
association measure in those cases where bare occurrence frequency does not.
That is, there are collocation extraction tasks in which the relative lack of a
correlation with occurrence frequency is an attractive property.

MI does not suffer from a sensitivity to low frequency data, as it is an average
of PMIs weighted by p(x, y) – as p(x, y) goes down, the impact of the increas-
ing PMI on the average becomes less. In fact, in the kind of data we have in
collocation extraction, we may expect the upper bound of MI to be positively
correlated with frequency. MI equals the entropy of the two indicator variables
when they are perfectly correlated. Its maximum is thus higher for more evenly
distributed variables. In contingency tables from corpus data like in Table 1, by
far most probability mass is in the bottom right (Lw = no, Rv = no). It follows
that entropy, and thus maximal MI, is (slightly) higher for combinations that
occur more frequently. As with PMI, however, the lack of a fixed upper bound
for MI does mean that it is easier to interpret it as a measure of independence
(distance to 0) than as a measure of correlation.

3 Normalizing MI and PMI

To give MI and PMI a fixed upper bound, we will normalized the measures to
have a maximum value of 1 in the case of perfect (positive) association. For PMI,
it is hoped that this move will also reduce some of the low frequency bias. There
are several ways of normalizing MI and PMI, as in both cases the maximum
value of the measures coincides with several other measures.

3.1 Normalized PMI

When two words only occur together, the chance of seeing one equals the chance
of seeing the other, which equals the chance of seeing them together. PMI is
then:

i(x, y) = − ln p(x) = − ln p(y) = − ln p(x, y) (6)
(when X and Y are perfectly correlated and p(x, y) > 0).

This gives us several natural options for normalization: normalizing by some
combination of − ln p(x) and − ln p(y), or by − ln p(x, y). We choose the latter

probability roof of p(a, b) is min(p(a), p(b), which, in terms of ratios, becomes further
away from p(a)p(b) as p(a) and p(b) get smaller.



option, as it has the pleasant property that it normalizes the upper as well as
the lower bound. We therefore define normalized PMI as as:

in(x, y) =
(

ln
p(x, y)

p(x)p(y)

)/
− ln p(x, y). (7)

Some orientation values of NPMI are as follows: When two words only occur to-
gether, in(x, y) = 1; when they are distributed as expected under independence,
in(x, y) = 0 as the numerator is 0; finally, when two words occur separately but
not together, we define in(x, y) to be −1, as it approaches this value when p(x, y)
approaches 0 and p(x), p(y) are fixed. For comparison, these orientation values
for PMI are respectively − ln p(x, y), 0 and −∞.6

3.2 An aside: PMI2

Since the part in the PMI definition inside of the logarithm has an upper bound
of 1/p(x, y), one may also consider ‘normalizing’ this part. The result is called
PMI2, defined in (8):

ln
(

p(x, y)
p(x)(y)

/ 1
p(x, y)

)
= ln

p(x, y)2

p(x)(y)
. (8)

The orientation values of PMI2 are not so neat as NPMI’s: 0, ln p(x, y), and −∞
respectively. As a normalization, NPMI seems to be preferable. However, PMI2

is part of a family of heuristic association measures defined in Daille (1994). The
PMIk family was proposed in an attempt to investigate how one could improve
upon PMI by introducing one or more factors of p(x, y) inside the logarithm.
Interestingly, Evert (2005) has already shown PMI2 to be a monotic transfor-
mation of the geometric mean association measure.7 Here we see that there is a
third way of understanding PMI2 – as the result of normalizing the upper bound
before the taking the logarithm.8

6 One of the alternatives, which we would like to mention here but reserve for future
investigations, is to normalize by − ln max(p(x), p(y)). This will cause the measure
to take its maximum of 1 in cases of positive dependence, i.e., when one word only
occurs in the context of another, but not necessarily the other way around. It seems
plausible that there are collocation extraction tasks where this is a desired property,
for instance in cases where the variation in one part of the collocation is much more
important than in the other. See Evert (2007, Sect. 7.1), for some remarks about
asymmetry in collocations.

7 The geometric mean association measure is:

gmean(x , y) =
f(x, y)p
f(x)f(y)

8 We have further noticed that in practice PMI2 is nearly a monotone transformation
of X2. To see why this may be so, consider one of the simplifications of X2 valid in



3.3 Normalized MI

We know that in general 0 ≤ I(X; Y ) ≤ H(X), H(Y ) ≤ H(X, Y ). In addition,
when X, Y correlate perfectly, it is also the case that I(X; Y ) = H(X) =
H(Y ) = H(X, Y ). As in the case of PMI before, this gives us more than one way
to normalize MI. In analogy to NPMI, we normalize MI by the joint entropy:

In(X, Y ) =

∑
x,y p(x, y) ln p(x,y)

p(x)p(y)

−
∑

x,y p(x, y) ln p(x, y)
(9)

MI is the expected value of PMI. Likewise, the normalizing function in NMI is the
expected value of the normalizing function in NPMI: −

∑
x,y p(x, y) ln p(x, y) =

Ep(X,Y )[− ln p(X, Y )].
The orientation values of NMI are 1 for perfect positive and negative corre-

lation, and 0 for independence. It is possible to define a signed version of (N)MI
by multiplying by ±1 depending on the sign of p(x, y) − p(x)p(y). This does
not make a practical difference for the extraction results, however. The observed
dispreferred bigrammes do typically not get very high scores and therefore do
not get interspersed with preferred combinations.

3.4 Previous work on normalizing (P)MI

The practice of normalizing MI – whether as in (9) or by alternative factors – is
common in data mining and information retrieval. An overview of definitions and
data mining references can be found in Yao (2003). As mentioned above, PMI2,
as special case of PMIk, was introduced and studied in Daille (1994), together
with a range of other association measures. PMI2 and PMI3 were re-proposed
as (log frequency biased) mutual dependency in Thanopoulos et al. (2002), in
an attempt to get a more intuitive relation between PMI’s upper bound and
occurrence frequency.

4 A preliminary empirical investigation

To get a better feeling for the effect of normalizing MI and PMI, we will present
results of evaluating NMI and NPMI against three parts of the MWE 2008 shared
task.

the case of two indicator variables (Evert, 2005, Lemma A.2):

N · [f(Lw =yes, Rv =yes)− fe(Lw =yes, Rv =yes)]2

fe(Lw =yes, Rv =yes) · fe(Lw =no, Rv =no)

It is not uncommon for fe(Lw =no, Rv =no) to be nearly N and for
fe(Lw =yes, Rv =yes) to be orders of magnitude smaller than f(Lw =yes, Rv =yes)
in a co-occurrence table. If we ‘round off’ the formula accordingly and take its
logarithm, we arrive at PMI2.
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Fig. 1. Normalization of PMI (l) and MI (r) per frequency group (German AN data).

The procedure is as follows: The collocation candidates are ranked according
to the association measure. These lists are then compared to the gold standards
by calculating average precision. Average precision takes a value of 100% when
all collocations are ranked before the non-collocations. Its value equals the per-
centage of collocations in the dataset when the candidates are randomly ordered.

The first dataset contains 1212 adjective-noun bigrammes sampled from the
Frankfurter Rundschau (Evert, 2008a). We consider three different subtasks on
the basis of this dataset, depending on how narrow we define collocation in
terms of the annotation. The second dataset is described in Krenn (2008) and
contains 5102 German verb-PP combinations, also taken from the Frankfurter
Rundschau. Here, too, we look at three subtasks by considering either or both
of the annotated collocation types as actual collocations. For the final and third
dataset, we look at 12232 Czech bigrammes, described in Pecina (2008b).

Before evaluating (N)(P)MI against the gold standards, it is instructive to
look at the effects of normalization on the ranking of bigrammes produced by
each measure. To this end, we plotted the rankings according to the original
measures against their normalized counterparts in Fig. 1. From the left plot, we
conclude that PMI and NPMI agree well in the ranking: the ranks fall rather
closely to the diagonal. For MI and NMI, to the right, we see that normalization
has more impact, as the points deviate far from the diagonal.

In addition, the plotted data has been divided into three groups: high, medi-
um, and low frequency. Normalizing PMI should reduce the impact of low fre-
quency on ranking. Indeed, we see that the low frequency points fall above the
diagonal – i.e., they are ranked lower by NPMI than by PMI, if we consider 1
to be the highest rank – and high frequency points fall below it. Normalizing
MI, on the other hand, on average moves high frequency data points down and
low frequency points up. All in all, we can see that in practice normalization



Table 2. Evaluation of (P)MI and their normalized counterparts on three datasets.
Reported are the average precision scores in percent.

German AN German V-PP

Measure cat 1 cat 1–2 cat 1–3 figur support both

Czech
bigrammes

random 28.6 42.0 51.6 5.4 5.8 11.1 21.2
frequency 32.2 47.0 56.3 13.6 21.9 34.1 21.8

pmi 44.6 54.7 61.3 15.5 10.5 24.4 64.9
npmi 45.4 56.1 62.7 16.0 11.8 26.8 65.6
pmi2 45.4 56.8 63.5 17.0 13.6 29.9 65.1

mi 42.0 56.1 64.1 17.3 22.9 39.0 42.5
nmi 46.1 58.6 65.3 14.9 10.6 24.6 64.0

does what we wanted: normalizing PMI makes it slightly less biased towards
low frequency collocations, normalizing MI makes it less biased towards high
frequency ones.

Although not as clearly observable as the effect of normalization, the graphs
in Fig. 1 also show the relation of the un-normalized measures to simple oc-
currence frequency. For MI, high frequency combinations tend to appear in the
upper half of the ranked bigramme list. If we rank after PMI, however, the high
frequency bigrammes are more evenly spread out. PMI’s alleged sensitivity to
low frequency is perhaps more accurately described as a lack of sensitivity to
high frequency.

Table 2 contains the results of the evaluation of the measures on the three
data sets. The ‘random’ and ‘frequency’ measures have been included as base-
lines. The reported numbers should only be taken as indications of effectiveness
as no attempt has been made to estimate the statistical significance of the differ-
ences in the table. Also, the results do not in any sense represent state-of-the-art
performance: Pecina (2008a) has shown it is possible to reach much higher levels
of effectiveness on these datasets with machine learning techniques.

Table 2 shows that NPMI and PMI2 consistently perform slightly above
PMI. The trio has below-frequency performance on the German V-PP data in
the ‘support’ and ‘both’ subtasks. This is to be expected, at least for PMI and
NPMI. The frequency baseline is high in these data (much higher than random),
suggesting that measures that show more frequency influence (and thus not
(N)PMI) will perform better.

The behaviour of NMI is rather different from that of MI. In fact it seems
that NMI behaves more like one of the pointwise measures. Most dramatically
this is seen when MI is effective but the pointwise trio is not: in the German
V-PP data normalizing MI has a disastrous effect on average precision. In the
other cases, normalizing MI has a positive effect on average precision.

Summarizing, we can say that, throughout, normalizing PMI has a moderate
but positive effect on its effectiveness in collocation extraction. We speculate



that it may be worth using NPMI instead of PMI in general. NMI, however, is a
very different measure from MI, and it makes more sense to use both the original
and the normalized variant alongside of each other.

5 Conclusion and future work

In this paper, we have tried to introduce into the collocation extraction research
field the normalized variants of two commonly used association measures: mutual
information and pointwise mutual information. The normalized variants NMI
and NPMI have the advantage that their values have fixed interpretations. In
addition, a pilot experimental study suggests that NPMI may serve as a more
effective replacement for PMI. NMI and MI, on the other hand, differ more
strongly in their relationship. As the collocation literature has shown that the
effectiveness of a measure is strongly related with the task, much more and more
profound empirical study is needed to be able to declare NPMI as always more
effective as PMI, however.

In the experiments discussed above, we have relied on MLE in the calcula-
tion of the association scores. Since the measures are functions of probabilities,
and not frequencies directly, it is straightforward to replace MLE with other
ways of estimating probabilities, for instance some smoothing method. A more
radical further step would be to use a different reference distribution in the as-
sociation measures, i.e., to measure p(x, y)’s deviation from something else than
p(x)p(y). A change of reference distribution may, however, force us to adopt
other normalization strategies.

Finally, as indicated in Section 3, there is more than one way to Rome when
it comes to normalization. We hope to have demonstrated in this paper that
investigating the proposed normalized measures as well as alternative ones is
worth the effort in the context of collocation research.
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