Querying Linguistic Corpora with Prolog

Gerlof Bouma
Department Linguistik
Universitit Potsdam
Postsdam, Germany
gerlof .bouma@uni-potsdam.de

Abstract

In this paper we demonstrate how Prolog can be used
to query linguistically annotated corpora, combining
the ease of dedicated declarative query languages
and the flexibility of general-purpose languages. On
the basis of a Prolog representation of the German
Tiiba-D/Z Treebank, we show how one can tally ar-
bitrary features of (groups) of nodes, define queries
that combine information from different layers of
annotation and cross sentence boundaries, query ‘vir-
tual annotation’ by transforming annotation on-the-
fly, and perform data driven error analysis. Almost
all code needed for these case studies is contained in
the paper.

1 Introduction

In recent years, there has been a strong increase in
the availability of richly annotated corpora and cor-
pora of ever growing size. In tact with this, there
is a thriving research into ways of exploiting these
corpora, where especially the conflicting constraints
posed by the desire for an expressive query formal-
ism and the computational demands of querying a
large corpus form a driving tension. In this paper
we hope to contribute to this debate by advocating
the use of Prolog, a general-purpose language, to
query corpora. We will argue by means of a series of
concrete examples that Prolog is declarative enough
to allow formulation of corpus queries in an intu-
itive way, that it is flexible and powerful enough to
not constrain the computational linguist wishing to
get as much as possible out of a corpus, and that on
modern Prolog implementations, it is fast enough to
intensively use corpora of a million tokens or more.

Before we turn to the examples that make up
the body of this paper, we briefly discuss what

makes Prolog a good language for corpus query-
ing, but also what its disadvantages are. It should
be clear from the outset, however, that we do not
propose Prolog per se to be used as a query tool for
the (non-programmer) general linguist who wants a
fully declarative corpus environment, including tree
vizualization, etc. Rather, our target is the advanced
corpus user/computational linguist who needs an ex-
tendable query language and features beyond what
any specific dedicated query tool can offer, that is,
the type of user who will end up using a general-
purpose language for part of their corpus tasks.

1.1 Why use Prolog?

Semi-declarativeness, non-deterministic search
Prolog is well-suited to write database-like queries
in (see e.g., Nilsson and Maluszynski (1998) for a de-
scription of the relation between relational database
algebra and Prolog) — one defines relations between
entities in terms of logical combinations of proper-
ties of these entities. The Prolog execution model is
then responsible for the search for entities that satisfy
these properties. This is one of the main advantages
over other general-purpose languages: in Prolog, the
programmer is relieved of the burden of writing func-
tions to search through the corpus or interface with a
database.

Queries as annotation Any query that is more
complicated than just requesting an entry from the
database is a combination of the user’s knowledge
of the type of information encoded in the database
and its relation to the linguistic phenomenon that
the user is interested in. Thus, a query can be under-
stood as adding annotation to a corpus. In Prolog, a
query takes the form of a predicate, which can then
be used in further predicate definitions. In effect, we
can query annotation that we have ourselves added.



The lack of a real distinction between existing
annotation (the corpus) and derived annotation (sub-
queries) is made even more clear if we consider the
possibility to record facts into the Prolog database
for semi-permanent storage, or to write out facts to
files that can then later be loaded as given annota-
tion. This also opens up the possibility of performing
corpus transformations by means of querying. Re-
lated to the queries as annotation perspective is the
fact that by using a general-purpose programming
language, we are not bound by the predefined rela-
tions of a particular query language. New relations
can be defined, for instance, relations that combine
two annotation layers (see also Witt (2005)), or cross
sentence boundaries.

Constraining vs inspecting TIGERSearch
(Konig et al., 2003) offers facilities to give (statisti-
cal) summaries of retrieved corpus data. For instance,
one can get a frequency list over the POS tags of re-
trieved elements. This is a very useful feature, as
it is often such summaries that are relevant. The
reversibility of (well-written) Prolog predicates facil-
itates implementing such functionality. It is possible
to use the exact same relations that one uses to con-
strain query matches to request information about a
node. If has_pos/2 holds between a lexical node and
its POS-tag, we can use it to require that a lexical
node in a query has a certain POS-tag or to ask about
a given node what its POS-tag is.

Scope of quantifiers and negation Query lan-
guages differ in the amount of control over the scope
of quantifiers and negation in a query (Lai and Bird,
2004). For instance, Kepser’s (2003) first-order-logic
based query language allows full control over scop-
ing by explicit quantification. On the other hand,
TIGERSearch’s query language (Konig et al., 2003)
is restrictive as it implicitly binds nodes in a query
with a wide scope existential quantifier. Queries like
find an NP that does not contain a Det node are not
expressible in this language.

In a general-purpose language we get full con-
trol over scope. We can illustrate this with negation,
canonically implemented in Prolog by negation as
(Prolog) failure (written: \+). By doing lookup in
the database of subtrees/nodes inside or outside of
a negated goal, we vary quantifier scope: Lookup(X),
\+ p(X) succeeds when X does not have property p,
and \+ (lookup(X), p(X)) succeeds when there is no
X with p. A discussion of the implementation of
queries that rely on this precise control over scope
can be found in (Bouma, 2010).

1.2 Why not use Prolog?

Not so declarative Compared to dedicated query
languages, Prolog lacks declarativeness. The order
in which properties are listed in a query may have
consequences for the speed with which answers are
returned or even the termination of a query. The use
of Prolog negation makes this issue even worse. For
many queries, there is a simple pattern that avoids the
most common problems, though: 1) supply positive
information about nodes, then 2) access the database
to find suitable candidates, and 3) check negative
information and properties that involve arithmetic
operations. Most of the examples that we give in the
next section follow this pattern.

Poor regular expression support Although there
are some external resources available, there is no
standardized regular expression support in Prolog.
This contrasts with both dedicated query languages
and with other high-level general-purpose program-
ming languages. However, for some uses of regular
expressions, there are good alternatives. For instance,
restricting the POS-tag of a node to a known and fi-
nite set of POS-tags could also be achieved through
a disjunction or by checking whether the POS-tag oc-
curs in a list of allowed POS-tags. These alternatives
are typically easy and fast in Prolog.

After these abstract considerations, we shall spend
the rest of the paper looking more concretely at Pro-
log as a query language in a number of cases. After
that, in Section 4, we briefly discuss the speed and
scalability of a Prolog-based approach.

2 Exploiting the TiiBa-D/Z corpus

In this section, we will demonstrate the flexibility of
our approach in a series of small case studies on the
TiiBa-D/Z treebank of German newspaper articles
(Telljohann et al., 2006, v5). The treebank has a size
of approximately 800k tokens in 45k sentences, and
contains annotation for syntax (topological fields,
grammatical functions, phrases, secondary relations)
and anaphora. We chose this treebank to be able to
show a combination of different annotation layers in
our queries.

The section is rather code heavy for a conference
paper. By including the lion’s share of the Prolog
code needed to do the tasks in this section, we in-
tend to demonstrate how concise and quick to set up
corpus programming in Prolog can be.



SIMPX

VF LK MF NF
NX  VXFIN NX P "7 sIMPX
. .7 _—
PI"JS VALIN NX PX Lo MF ve
. =
Dieser  hat N‘N APPR NX/ N‘X VXlNF
Auswirkungen auf A(\NN N‘N vvlzu

die Bereitschaft ,

Therapieangebote anzunehmen

“This has effects on the willingness to accept therapy.”

node (153, 0, 500, ’Dieser’, hd, pds, [morph=nsm]).
node(153, 1, 501, hat, hd, vafin, [morph=’3sis’]).
node(153, 2, 502, ’Auswirkungen’, hd, nn, [morph=apfl).
node (153, 3, 508, auf, -, appr, [morph=a]).

node(153, 4, 503, die, -, art, [morph=asf]).

node(153, 5, 503, ’Bereitschaft’, hd, nn, [morph=asf]).
node(153, 6, 0, (’,?), --, ’$,’, [morph= --1).

node(153, 7, 504, ’Therapieangebote’, hd, nn, [morph=apn]).
node(153, 8, 505, anzunehmen, hd, vvizu, [morph= --1).
node(153, 9, 0, ’.’, --, $., [morph= --]).

secondary (153,503,512, refint) .

node (153, 515, 0, ’$phrase’, --, simpx, [1).
node(153, 506, 515, ’$phrase’, -, vf, [1).
node(153, 500, 506, ’$phrase’, on, nx, [1).
node (153, 507, 515, ’$phrase’, -, 1k, [1).
node(153, 501, 507, ’$phrase’, hd, vxfin, [1).
node(153, 513, 515, ’$phrase’, -, mf, [1).

node(153, 511, 513, ’$phrase’, oa, nx, [1).
node(153, 502, 511, ’$phrase’, hd, nx, [1).

node(153, 508, 511, ’$phrase’, -, px, [1).
node (153, 503, 508, ’$phrase’, hd, nx, [1).
node(153, 514, 515, ’$phrase’, -, nf, [1).

node(153, 512, 514, ’$phrase’, mod, simpx, [1).

node (153, 509, 512, ’$phrase’, -, mf, [1).
node (153, 504, 509, ’$phrase’, oa, nx, [1).
node (153, 510, 512, ’$phrase’, -, vc, [1).

node (153, 505, 510, ’$phrase’, hd, vxinf, [1).

Figure 1: A tree from Tiiba-D/Z and its Prolog representation.

2.1 Corpus representation

We take the primary syntactic trees as the basis of the
annotation. Following Brants (1997), we store the
corpus as collection of directed acyclic graphs, with
edges directed towards the roots of the syntactic trees.
A tree from the TiiBa-D/Z corpus is represented as
a collection of facts node/7, which contain for each
node: an identifier (a sentence id and a node id), the
id of the mother node, the edge label, its surface
form, its category or POS-tag and a list with possible
other information. Below we see two facts for illus-
tration — a lexical (terminal) node and a phrasal node
that dominates it.! Phrases carry a dummy surface
form > $phrase’. Secondary edges are represented as
secondary/4 facts, and use the sentence and node ids
of the primary trees.

% node/7 SentId NodeId MotherId

YA Form Edge Cat Other
node (153, 4, 503, die, -, art, [morph=asf]).
node (153, 503, 508, ’$phrase’, hd, nx, []).

Coding conventions: Most predicate names are VS(O) sen-
tences: has_edge(A,A_e) reads node A has edge label A,.
Predicates defined for their side-effects get imperative verbs
forms. Variables A,B,C refer to nodes, and subscripts are used for
properties of these nodes. Variables that represent updates are
numbered A, A1, A2. Lists receive a plural-s. For readability, we
use the if-then-else notation instead of cuts as much as possible.

% secondary/4 SentId NodeId MotherId Edge
secondary (153,503,512, refint) .

By using the sentence number as the first argument
of node/7 facts, we leverage first argument index-
ing to gain fast access to any node in the treebank.
If we know a node’s sentence number, we never
need to search longer than the largest tree in the cor-
pus. Since syntactic relations hold within a sentence,
querying syntactic structure is generally fast (Sec-
tion 4). A tree and its full representation is given
in Figure 1. We will not use the secondary edges
in this paper: their use does not differ much from
querying primary trees and the anaphora annotation
(Section 2.4). We can define interface relations on
these facts that restrict variables without looking up
any nodes in the database by partially instantiating
them.

has_sentid(node(A_s, _,_,_,_,_,_),A_s).
has_nodeid(node(_,A_n,_,_,_,_,_),A_n).
has_mother(node(_,_,A m,_,_,_,_),A m).
has_form(node(_,_,_,A_f,_,_,_),A_).
has_edge(node(_,_,_,_,A_e,_,_),A_e).
has_poscat (node(_,_,_,_,_,A_p,_),A_p).

is_under(A,B):-
has_mother(A,A_m,A_s),
is_phrasal(B),
has_nodeid(B,A_m,A_s).



is_under_as(A,B,A_e):-
is_under(A,B),
has_edge(A,A_e).

are_sentmates(A,B):-
has_sentid(A,A_s),
has_sentid(B,A_s).

is_phrasal(A):-
has_form(A,’$phrase’).

Actually looking up a node in the corpus involves
calling a term node/7, for instance by defining a prop-
erty of a node-representing variable and then calling
the variable: is_phrasal(A), A will succeed once for
each phrasal node in the corpus.

Transitive closures over the simple relations above
define familiar predicates such as dominance (clo-
sure of is_above/2). In contrast with the simple re-
lations, these closures do look up (instantiate) their
arguments. In addition, has_ancestor/3 also returns
a list of intermediate nodes.

has_ancestor(A,B) :-
has_ancestor(A,B,_ ).

has_ancestor(A,B,AB_path):-
are_sentmates(A,B),
A, is_under(A,A1), A1,
has_ancestor_rf1(A1,B,AB_path).
has_ancestor_rfl(A,A,[]).

has_ancestor_rfl(A,B, [A|AB_path]):-
is_under(A,A1), A1,
has_ancestor_rfl(A1,B,AB_path).

With these basic relations in place, let us look at
determining linear order of phrases.

2.2 Linear order

As yet, linear order is a property of words in the
string (lexical nodes), that we may determine by
looking at their node ids (cf. Figure 1). Linear order
of phrases is not defined. We can define the position
of any node as its span over the string, which is deter-
mined by the outermost members in the node’s yield,
that is, the members of the yield with the minimum
and maximum node id.?

2£01d/3 (left fold, aka reduce) and map/N are higher order
predicates that generalize predicates to apply to list(s) of argu-
ments, familiar from functional programming (see e.g., Naish
(1996)). Given that min/3 relates two numbers and their min-
imum, the goal fold(min,Ns,M) succeeds if M is the lowest
number in of the list Ns. Given that has_nodeid/2 relates one
node and its id, the goal map (has_nodeid,As,A_ns) succeeds
on a list of nodes As and a list of their corresponding ids A_ns.

spans(A,A_beg,A_end):-
yields_dl(A,Bs\[1),
map (has_nodeid,Bs,B_ns),
fold(min,B_ns,A_beg),
fold(max,B_ns,B_n_mx),
A_end is B_n_mx+1

The yield of a phrase is the combined yields of its
daughters. A lexical node is its own yield.

yields_d1(A,Bs):-
is_phrasal(A)
-> ( is_above(A,Al),
findall (A1, A1, Als),
map(yields_dl,Als,Bss),
fold(append_dl,Bss,Bs)
)
; % is_lexical(A)
Bs = [A|Cs]\Cs.

According to this definition, the span of the word
Auswirkungen in the tree in Figure 1 is 2-3, and the
span of the MF-phrase is 2—6.

It makes sense to store the results from spans/2
instead of recalculating them each time, especially
if we intend to use this information often. Using a
node’s span, we can define other relations, such as
precedence between phrasal and lexical nodes, and
edge alignment.

precedes(A,B):-
are_sentmates(A,B),
spans(A,_,A_end),
spans (B,B_beg,_),
A_end =< B_beg.

are_right_aligned(A,B):-
are_sentmates(A,B),
spans(A,_,A_end),
spans(B,_,A_end).

Although there are no discontinuous primary phrases
in Tiiba-D/Z, the definition of precedence above
would be appropriate for such phrases, too. Note,
however, that in this case two nodes may be un-
ordered even when one is not a descendant of the
other. In TIGERSearch, precedence between phrases
is defined on both left corners (Konig et al., 2003).
It would be trivial to implement this alternative.

2.3 Phrase restricted bigrammes

In the first task, we see a combination of negation
scoping over an existential quantifier in a query and
the use of a predicate to ask for a property (surface
form) rather than to constrain it. The task is to re-
trieve token bigrammes contained in non-recursive
NPs, which are NPs that do not contain other NPs.



This requires a negation scoping over the selection of
a descendent NP node. Once we have a non-recursive
NP, we select adjacent pairs of nodes from its ordered
yield and return the surface forms:

bigr_in_nonrec_NP(A_f,B_f):-
has_form(A,A_f),
has_form(B,B_f),
has_cat(C,nx),
has_cat(D,nx),
C, \+ has_ancestor(D,C),
yields_ord(C,Es),
nextto(A,B,Es).

yields_ord/2 holds between a node and its ordered
yield. Ordering is done by decorate-sort-undecorate.

yields_ord(A,Bs):-
yields_d1(A,Cs\[1),
keys_values(CnsCs,C_ns,Cs),
map (has_nodeid,Cs,C_ns),
keysort (CnsCs,BnsBs) ,
values (BnsBs,Bs) .

% decorate

% sort
% undecorate

The query succeeds 160968 times, that is, there are
161k bigramme tokens in non-recursive NPs in the
corpus. There are 105685 bigramme types, of which
the top 10 types and frequencies are:

(D der Stadt 141 6
der Nato 138 7

1 der Welt 103
2

3  mehr als 136 8
4

5

den letzten 103
die Polizei 98
ein paar 97
den USA 90

die Nato 125 9
die beiden 107 10

2.4 Combining annotation layers

As mentioned, the Tiiba-D/Z corpus additionally con-
tains annotation of anaphora and coreference. This
annotation layer can be considered as a graph, too,
and may be stored in a fashion similar to the sec-
ondary edges. The sentence and node ids in the
anaphor/5 facts are again based on the primary trees.

% anaphor/4 SentId NodeId Rel SentIdM NodeIdM
anaphor(4, 527, coreferential, 1, 504).
anaphor (4, 6, anaphoric, 4, 527).

anaphor (6, 522, coreferential, 4, 512).

In addition, we have a convenience predicate that
links node/7 terms to the anaphora facts.

is_linked_with(A,Rel,B):-
has_nodeid(A,A_n,A_s),
has_nodeid(B,B_n,B_s),
anaphor(A_s,A_n,Rel,B_s,B_n).

A very basic combination of the two annotation lay-
ers allows us to formulate the the classic i-within-i
constraint (Hoeksema and Napoli, 1990).

Antecedent GF

Pron. GF on oa od rest Total

on 2411 236 162 589 3398
.03 -.09 -.06

oa 168 46 16 62 292
-.18 73 .08

od 173 20 19 45 257
-.03 .02 .38

rest 142 17 15 63 237

Total 2894 319 212 759 4184

Table 1: Cross tabulation of grammatical function of
pronoun-antecedent pairs from adjacent sentences,
counts and association scores (PMI).

%[ ...X4i...17.41

i_within_i(A,B):-
is_linked(A,_Rel,B),
has_ancestor(A,B).

The query returns 19 hits, amongst which (2):

(2) [die kleine Stadt mit ihren; 7.000 Einwohnern];
the small town with its inhabitants

2.5 Grammatical function parallelism

In anaphora annotation, links can be made between
nodes that are not contained within one sentence — a
coreference link could span the entire corpus. In this
task, we follow intra-sentential links. We will try to
find corpus support for the (not uncontested) claim
that people prefer to interpret pronouns such that the
antecedent and pronoun have the same grammatical
function (Smyth, 1994, a.0.). As a reflection of this
preference, we might expect that there is a trend for a
pronoun and its antecedent in the directly preceding
sentence to have the same grammatical function. The
predicate ana_ant_gf/2, defined below, returns the
grammatical functions of an anaphoric NP headed
by a personal pronoun and its NP antecedent if it
occurs in the immediately preceding sentence.
ana_ant_gf(A_e,B_e):-

has_edge(A,A_e,A_s),

is_under_as(A1,A,hd),

has_pos (A1, pper),

has_edge(B,B_e,B_s),

has_cat(B,nx),

is_linked_with(A,anaphoric,B),

B_s is A_s-1, % B in sentence before A

A, A1, B.
The query succeeds just over 4k times. Table 1 sum-
marizes the results. For the top-left cells, we’ve cal-
culated pointwise association (PMI) between the two



variables. The rows on the diagonal have positive val-
ues, which means the combination occurs more often
than expected by chance, as expected by the paral-
lelism hypothesis.? In Section 2.7, we will revisit
this task.

2.6 Coreference chains

Until now, we have used the anaphoric annotation
as-is. However, we can also consider it in terms of
coreference chains, rather than single links between
nodes. That is, we can construct equivalence classes
of nodes that are (transitively) linked to each other:
they share one discourse referent. Naive construction
of such classes is hampered by the occurrence of
cycles in the anaphora graph. Therefore, we need to
check for each anaphoric node whether its containing
graph contains a cycle. If it does, we pick any node in
the cycle as the root of the graph. Non-cyclic graphs
have the (unique) node with out-degree zero as their
root. We use the Prolog database to record the roots
of cyclic graphs, so that we can pick them as the root
next time we come to this graph.

has_root(A,B):-
is_linked_with(A,Al),
( leads_to_cycle_at(A1,C)
-> (B =2¢C,
record_root (B)
)

; has_root_rfl_nocycles(A,B)
).

has_root_rfl_nocycles(A,B):-
is_recorded_root(A)
->B=A
; is_linked_with(A,Al)
-> has_root_rfl_nocycles(A1,B)
; B=A.

The cycle check itself is based on Floyd’s tortoise
and hare algorithm, whose principle is that if a slow
tortoise and a fast hare traversing a graph land on
the same node at the same time, there has to be a
cycle in the graph. In our version, the tortoise does
not traverse already recorded root nodes, to prevent
the same cycle from being detected twice.

leads_to_cycle_at(A,B):-
is_linked_with(A,Al),
is_linked_with(A1,A2),
tortoise_hare(A1,A2,B).

3This should not be taken as serious support for the hypoth-
esis, though. The association values are small and there are
other positive associations in the table. Also, we have not put a
lot of thought into how the annotation relates to the linguistic
phenomenon that we are trying to investigate.

Antecedent GF

Pron. GF on oa od rest Total

on 4563 500 353 1312 6728
.02 -.07 -.05

oa 367 85 43 134 629
-.13 .53 21

od 392 48 47 115 602
-.02 .00 34

rest 309 39 26 136 510

Total 5631 672 469 1697 8469

Table 2: Cross tabulation of grammatical function of
pronoun-antecedent pairs from adjacent sentences,
counts and association scores (PMI). Revisited.

tortoise_hare(A,B,C):-
\+ is_recorded_root(A),
( A =B 7 evidence of cycle
-> C=A
; ( is_linked_with(A,Al1), % tort. to Al
is_linked_with(B,B1), Y% hare to
is_linked_with(B1,B2), % B2
tortoise_hare(A1,B2,C)
)
).

Collecting all solutions for has_root/2, we find
20516 root and 50820 non-root referential expres-
sions. The average coreference chain length is 3.48,
the longest chain has 176 mentions in 164 sentences.

2.7 Revisiting parallelism

Let us go back to pronoun-antecedent parallelism
with this alternative view of the anaphora annota-
tion. In our first attempt, we missed cases where a
pronoun’s referent is mentioned in the previous sen-
tence, just not in a node directly anaphorically linked
to the pronoun. The coreference chain view gives
us a chance to get at these cases. Note that now a
pronoun may have more than one antecedent in the
preceding sentence. The predicate ana_ant_gf_rev/2
succeeds once for each of the possible pairs:

ana_ant_gf_rev(A_e,B_e):-
has_edge(A,A_e,A_s),
is_under_as(A1,A,hd),
has_pos(Al,pper),
has_edge(B,B_e,B_s),
has_cat(B,nx),
AL, A,
B_s is A_s-1,
corefer(A,B).

Coreference between two given and distinct nodes
can be defined on has_root/2. That is, the definition



of coreference relies on a transformation of the orig-
inal annotation, that we are producing on-the-fly.

corefer(A,B) :-
has_root(A,B).

corefer(A,B) :-
has_root (B,A).

corefer(A,B) :-
has_root(A,C),
has_root(B,C).

Just like in our first attempt, we collect the results
in a table and calculate observed vs expected counts.
As could be expected, we get many more datapoints
(~8.5k). Table 2 shows a similar picture as before:
small, positive associations in the diagonal cells.

3 Corpus inspection

With the techniques introduced thus far, we can per-
form corpus inspection by formulating and calling
queries that violate corpus well-formedness con-
straints. A data-driven, large scale approach to er-
ror mining is proposed by Dickinson and Meurers
(2003). Errors are located by comparing the analyses
assigned to multiple occurrences of the same string.
A version of this idea can be implemented in the
space of this paper. Naive comparison of all pairs of
nodes would take time quadratic in the size of the
corpus. Instead, we record the string yield and cate-
gory of each interesting phrasal node in the database,
and then retrieve conflicts by looking for strings that
have more than one analysis. First, an interesting
phrase is one that contains two or more words, unary
branching supertrees.

interesting_node(A,Bs):-
phrasal(A), A,
\+ is_alone_under(_,A),
Bs = [_,_I_]1, % >= two nodes in yield
yields_ord(A,Bs).

is_alone_under(A,B):-
is_under(A,B), A, B,

\+ ( is_above(B,A1), A1, A1\=A ).

Then, recording a string involves checking whether
we have already seen it before and, if so, whether we
have a new analysis or an existing one.

record_string_analysis(A,Bs):-
map (has_form,Bs,B_fs),
fold(spaced_atom_concat,B_fs,String),
( retract(str_analyses(String,Analyses))
-> insert_analysis(A,Analyses,Analysesl)
; insert_analysis(A, [],Analysesl)
),

assert(str_analyses(String,Analyses1)).

insert_analysis(A,Analyses,Analysesl):-
has_cat(A,A_c),
( select(A_c-As,Analyses,Analyses2)
-> Analysesl = [A_c-[A|As]|Analyses2]

; Analysesl = [A_c-[A]|Analyses]

).
Exhaustively running the two main queries asserts
364785 strings into the database, with averages of
1.0005 different categories per string and 1.1869
occurrences per string.

The query str_analyses(Str,[_,_I_]1) succeeds
178 times, once for each string with more than one
analysis in the corpus. Far from all of these are true
positives. Common false positives are forms that can
be AdvPs (ADVX), NPs (NX) or DPs, such as immer

weniger ‘less and less’:

(3) das Fliigelspiel fand [,pyx immer weniger]
the piano playing found less and less
statt
place
‘The piano was played less and less often.’

(4) Japan importiert [yx immer weniger]
Japan imports less and less
‘Japan imports fewer and fewer goods.’

(5) Die braven BiirgerInnen produzieren [pp
Those good citizens produce
immer weniger| Miill
less and less ~ waste
‘The good citizens produce less and less waste’

We also see borderline cases of particles that might
or might not be attached to their neighbours:

(6) Fir Huhn ungewohnlich saftig [y auch sie]
for chicken remarkably juicy also it
‘It, too, was remarkably juicy, for being chicken.’

(7) Wahrscheinlich streift [yx auch sie] in diesem
Probably roams  also she at this
Moment durch ihr Nachkriegsberlin.
moment through her post-war Berlin
‘Probably, she, too, roams through her post-war
Berlin at this moment.’

In (6), the node of interest is labelled MF for the
topological Mittelfeld. This is not a traditional con-
stituent, but since Tiiba-D/Z annotates topological
fields we also capture some cases where a string is
a constituent in one place and a non-constituent in
another. Dickinson and Meurers (2003) introduce
dummy constituents to systematically detect a much
wider range of those cases.



Finally, real errors include the following example
of an NP that should have been an AdjP:

(8) [uxx Drei Tage lang] versuchte Joergensen ...
three days long tried Joergensen
‘Joergensen tried for three days to ...’

(9) [apix Drei Tage lang] versuchten hier
three days long tried here
Museumsarchitekten . ..
museum architects
‘Museum architects tried for three daysto...’

The proposal in Dickinson and Meurers (2003) is
more elaborate than our implementation here, but it
is certainly possible to extend our setup further. We
have shown that a basic but flexible query environ-
ment is quick to set up in Prolog. Prolog makes a suit-
able tool for corpus investigation and manipulation
because it is a general-purpose programming lan-
guage that by its very nature excels at programming
in terms of relations and non-deterministic search.

4 Performance

With ever growing corpora, speed of query evalua-
tion becomes a relevant issue. To give an idea of the
performance of our straightforward use of Prolog,
Table 3 shows wall-clock times of selected tasks.*

The uncompiled corpus of 45k sentences (~1.8M
Prolog facts) loads in about half a minute, but using
precompiled prolog code — an option many imple-
mentations offer — reduces this to 3 seconds. The
bottom of the table gives the time it takes to calcu-
late the number of solutions for queries described
in the previous section, plus lookup/1 which returns
once for each node in the corpus. As can be seen,
queries are generally fast, except for those that in-
volve calculating the yield. The use of memoiza-
tion or even pre-computation would speed these
queries up. Memory consumption is also moderate:
even with record_str_analyses/0, the system runs in
around 0.5Gbytes of RAM.

As an indication of the scalability of our approach,
we note that we (Bouma et al., 2010) have run queries
on dependency parsed corpora of around 40M words
(thus 40M facts). Loading such a corpus takes about
10 minutes (or under 1 minute when precompiled)
and uses 13GByte on a 64bit machine. Because of
first-argument indexing on sentence ids, time per an-
swer does not increase noticeably. We conclude that

4Test machine specifications: 1.6Ghz Intel Core 2 Duo,
2GBytes RAM, SWI-prolog v5.6 on 32-bit Ubuntu 8.04

Task # Solutions Time
Loading & indexing corpus 31s
Loading & indexing compiled corpus 3s
lookup/1 1741889 2s
yields_ord/2 1741889 81s
spans/3 1741889 87s
bigr_in_nonrec_NP/2 160968 80s
i_within_i/2 19 Is
has_root/2 50820 5s
ana_ant_gf/2 4184 1s
ana_ant_gf_rev/2 8471 9s
record_str analyses/0 1 101s
inconsistency/2 178 1s

Table 3: Wall-clock times of selected tasks.

the approach in this paper scales to at least medium-
large corpora. Scaling to even larger corpora remains
a topic for future investigation. Possible solutions
involve connecting Prolog to an external database,
or (as a low-tech alternative) sequential loading of
parts of the corpus.

5 Conclusions

In this paper, we hope to have shown the merits of
Prolog as a language for corpus exploitation with the
help of a range of corpus tasks. It is a flexible and
effective language for corpus programming. The fact
that most Prolog code needed for our demonstrations
is in this paper makes this point well. Having said
that, it is clear that the approach demonstrated in this
paper is not a complete replacement of dedicated
query environments that target non-programmers. In
depth comparison with alternatives — corpus query
environments, general-purpose language libraries,
etc. — is beyond the scope of this paper, but see
Bouma (2010) for a comparison of Prolog’s perfor-
mance and expressiveness with TIGERSearch on
number of canonical queries.

Future work will include the investigation of tech-
niques from constraint-based programming to make
formulating queries less dependent on the procedural
semantics of Prolog and the exploitation of corpora
that cannot be fitted into working memory.

Our studies thus far have resulted not only in
queries and primary code, but also in conversion
scripts, auxiliary code for pretty printing, etc. We
intend to collect all these and make these available
on-line, so as to help interested other researchers to
use Prolog in corpus investigations and to facilitate
reproducibility of studies relying on this code.



References

Gerlof Bouma, Lilja @vrelid, and Jonas Kuhn. 2010.
Towards a large parallel corpus of cleft construc-
tions. In Proceedings of LREC 2010, pages 3585—
3592, Malta.

Gerlof Bouma. 2010. Syntactic tree queries in Pro-
log. In Proceedings of the Fourth Linguistic An-
notation Workshop, pages 212-217, Uppsala.

Thorsten Brants. 1997. The NEGRA export format.
Technical report, Saarland University, SFB378.

Markus Dickinson and Detmar Meurers. 2003. De-
tecting inconsistencies in treebanks. In Proceed-
ings of the Second Workshop on Treebanks and
Linguistic Theories (TLT 2003), V#xjo.

Jack Hoeksema and Donna Jo Napoli. 1990. A
condition on circular chains: A restatement of i-
within-i. Journal of Linguistics, 26(2):403—-424.

Stephan Kepser. 2003. Finite structure query - a tool
for querying syntactically annotated corpora. In
Proceedings of EACL 2003, pages 179-186.

Esther Konig, Wolfgang Lezius, and Holger Voor-
mann. 2003. Tigersearch 2.1 user’s manual. Tech-
nical report, IMS Stuttgart.

Catherine Lai and Steven Bird. 2004. Querying and
updating treebanks: A critical survey and require-
ments analysis. In Proceedings of the Australa-
sion Language Technology Workshop, Sydney.

Lee Naish. 1996. Higher-order logic programming
in Prolog. Technical Report 96/2, Department of
Computer Science, University of Melbourne, Mel-
bourne, Australia, February.

UIf Nilsson and Jan Maluszynski. 1998. Logic, pro-
gramming and Prolog. John Wiley & Sons, 2nd
edition.

Ron Smyth. 1994. Grammatical determinants of
ambiguous pronoun resolution. Journal of Psy-
cholinguistic Research, 23:197-229.

Heike Telljohann, Erhard Hinrichs, Sandra Kiibler,
and Heike Zinsmeister. 2006. Stylebook for the
Tiibingen treebank of written German (TiiBa-D/Z).
revised version. Technical report, Seminar fiir
Sprachwissenschaft, Universitit Tiibingen.

Andreas Witt. 2005. Multiple hierarchies: New
aspects of an old solution. In Stefanie Dipper,
Michael Gotze, and Manfred Stede, editors, Het-
erogeneity in Focus: Creating and Using Linguis-
tic Databases, Interdisciplinary Studies on Infor-
mation Structure (ISIS) 2, pages 55-86. Univer-
sitdtsverlag Potsdam, Potsdam.



