
Lecture 5: Data structures

Introduction for Linguists (LT2102)

Markus Forsberg
Språkbanken

University of Gothenburg

September 21, 2010

Note on programming

I For the overwhelmed...
I If you know:

I basic types (e.g., numbers, strings, lists) and how
to perform calculations on them;

I how to input and output data;
I conditionals;
I loops;
I functions;
I and modules.

I Then you know the basics; you have the tools to
solve almost any computational problem.

I However, everything else you learn in this course
will help you become a better programmer.

Repetition: Values and expressions

I Values are the basic things we are working with,
such as number, lists, sets, and strings.

I Every value has a type. If we know a value’s
type, then we know what we can do with the
value (e.g., numbers can be added, strings can
be concatenated).

I Expressions denotes a value, possibly after some
computation. A value is (trivially) an expression.

I We use variables to give values names.

Repetition: Conditionals

I We use conditionals to control the flow of
execution.

I In Python, we use if-statements with conditions.
I A condition is an expression that computes to a

value of type bool (True, False).

if ’house’ in word:
print "word contains the string ’house’"

elif ’dog’ in word:
print "word contains the ’dog’, but not ’house’"

else:
print "word contains neither ’house’ nor ’dog’"

Repetition: Loops

I We use for to loop over something, and while
to loop over a condition.

for (m,n) in [(m,m**2) for m in range(1,11)]:
print m,n

print ’Enter a number: ’,
n = raw_input()
while not(n.isdigit()):

print "’%s’ is not a number" % n
print ’Enter a number: ’,
n = raw_input()

Repetition: Index and Slicing

I We use indexing to access an element in a
sequence (e.g, lists).

I We use slicing to access parts of a sequence.
I The first position is at number 0.

>>> sentence = [’Alice’, ’drinks’, ’coffee’]

>>> sentence[0][0]
’A’

>>> sentence[1][0:5] # position 0-4
’drink’

Repetition: Functions

I A function consists of a header with a name and
parameters, and a body of code having one or
more return statements.

I A procedure has no return statement. Python
returns a dummy value None of type NoneType
for procedures.

I If you end up with a None value you probably
misused a procedure as a function.

def ask_for_a_number(name):
print ’Hello, %s!’ % name
print ’Enter a number: ’,
n = raw_input()
while not(n.isdigit()):

print "’%s’ is not a number" % n
print ’Enter a number: ’,
n = raw_input()

return int(n)

Repetition: Modules

I We use modules to group things together, e.g.,
related functions.

I A module is a file NAME.py, where the name of
the module is NAME.

I Modules provides a new namespace, which
allow us to reuse names used outside the
module.

I Names in a module is accessed with the dot
notation: MODULE.name.

Comments and documentation

I Comments and documentation is written for
humans.

I They are not only for others, but also for the
programmer herself.

I We use documentation string to add
information to the module interface (accessed
by help(MODULE)).

def ask_for_a_number(name):
"""Ask a user ’name’ to enter a number"""
print ’Hello, %s!’ % name
print ’Enter a number: ’,
n = raw_input()
while not(n.isdigit()): # user must input a number.

print "’%s’ is not a number" % n
print ’Enter a number: ’,
n = raw_input()

return int(n)

Data structure

I A data structure is a container for data,
supporting a number of operations that can be
performed on it.

I What data structure to use depends on the
data and what we want to do with it.

I Today: lists, sets, tuples, and dictionaries.

Set

I Set: unordered collection (no indexing) of
unique elements (no duplication).

>>> s = set()
>>> s.add(’sun’)
>>> s.add(’shining’)
>>> s.add(’sun’)
>>> s
set([’sun’, ’shining’])

>> s[0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’set’ object does not support indexing

>>> list(s)
[’sun’, ’shining’]

Set operations

>>> s = set([’the’,’sun’, ’and’, ’the’,’moon’])

>>> for word in s:
print word,

and sun the moon

>>> s.remove(’the’)
>>> s
set([’and’, ’sun’, ’moon’])

>>> s.update([’tree’,’cloud’])
>>> s
set([’and’, ’sun’, ’tree’, ’moon’, ’cloud’])

Tuples

I We use tuples to group values together.
I Tuples are immutable, otherwise they work like

lists.
I Why not use lists instead?

I A tuple is a more efficient representation.
I A tuple works as documentation, and guards

against mistakes.

>>> t = (’tree’,’branch’)
>>> type(t)
<type ’tuple’>

>>> for (x,y) in [(m,n) for m in range(10)
for n in range(10)]:

... print x,y
0 0
0 1
...

List

I A list is a sequence of values.
I A list is mutable.
I We can create a list with list(ITERATOR).

>>> s = set([1,2,1,2])

>>> type(s)
<type ’set’>

>>> list(s)
[1, 2]

>>> type(list(s))
<type ’list’>

Built-in List operations

>>> sentence = [’The’,’sun’,’is’,’shining’]

>>> sentence.append(’.’)
>>> sentence
[’The’, ’sun’, ’is’, ’shining’, ’.’]

>>> sentence.extend(sentence)
>>> sentence
[’The’, ’sun’, ’is’, ’shining’, ’The’,

’sun’, ’is’, ’shining’]

>>> sentence.sort()
>>> sentence
[’The’, ’is’, ’shining’, ’sun’]

>>> del sentence[0]
>>> sentence
[’sun’, ’is’, ’shining’]

Built-in List operations

>>> sentence.pop()
’shining’
>>> sentence
[’The’, ’sun’, ’is’]

>>> sentence.remove(’sun’)
>>> sentence
[’The’, ’is’, ’shining’]

>>> [1,2] + [3,4]
[1,2,3,4]

>>> [1,2]*3
[1, 2, 1, 2, 1, 2]

Objects

I Everything in Python is an object.
I Testing if name1 is the same object as name2 is

done with name1 is name2.
I If they refer to the same object or not, matter

only if the object is mutable.

>>> x = sentence # Note! Not a copy (aliasing).
>>> x is sentence
True
>>> x[0] = ’Moon’
>>> sentence
[’Moon’, ’sun’, ’is’, ’shining’]

>>> x = list(sentence) # shallow copy
>>> x is sentence
False
>>> x = sentence[:] # same as above

List processing

I Map: change the elements of the list.
>>> sentence = [’The’, ’sun’, ’is’, ’shining’, ’.’]
>>> u_sentence = [token.upper() for token in sentence]
>>> u_sentence
[’THE’, ’SUN’, ’IS’, ’SHINING’, ’.’]

I Reduce: reduce a list to a value.
>>> ns = [1,2,3,4,5]
>>> sum(ns)
15

I Filter: filter some of the elements in a list.
>>> ns = [1,2,3,4,5]
>>> [n for n in ns if n % 2 == 0]
[2, 4]

I Combination of above:
>>> sum([n**2 for n in ns if n % 2 == 0])
20

Dictionaries

I A dictionary is a data structure for associating
keys with values (items), e.g., the keys could be
names, and values phone numbers.

>>> d = {’Alice’:’555-1212’,’Bob’:’555-1213’}

>>> type(d)
<type ’dict’>

>>> d[’Alice’]
’555-1212’

>>> d[’Alice’] = ’555-1111’
>>> d[’Sue’] = ’555-0101’
>>> d
{’Bob’: ’555-1213’, ’Alice’: ’555-1111’, ’Sue’: ’555-0101’}

Dictionary operations

>>> for key in d:
... print key, d[key]
Bob 555-1213
Alice 555-1111
Sue 555-0101

>>> list(d)
[’Bob’, ’Alice’, ’Sue’]

>>> for (key,value) in d.items():
... print key,value
Bob 555-1213
Alice 555-1111
Sue 555-0101

Dictionary and word frequency

def word_frequency(words):
freq = {}
for word in words:

if word not in freq:
freq[word] = 1

else:
freq[word] = freq[word] + 1

return freq

>>> word_frequency([’the’,’sun’,’the’,’moon’])
{’sun’: 1, ’the’: 2, ’moon’: 1}

Dictionaries

I A dictionary is also called hash table.
I A key in a dictionary must be hashable, i.e.,

supported by a function hash that transforms a
key value to an integer.

I The fact that keys are hashable is what enables
the data structure to be efficient.

>>> d = dict()
>>> d
{}

>>> d[[1,2,3]] = ’error’
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: ’list’

>>> hash(’Alice’)
85084331628275277

Exception: try, except, raise

I Exceptions exist to enable treatment of things
that ’should not happen’, such as indexing
outside a list.

I We use try and except to catch them. This
allows us to do something meaningful with them.

>>> int(’fd12’)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: ’fd12’

def ask_for_a_number(name):
print ’Hello, %s!’ % name
while True:

print ’Enter a number: ’,
n = raw_input()
try:

return int(n)
except ValueError:

print "’%s’ is not a number" % n

Exercise: anagrams

I Two words are anagrams if you can rearrange
the letters from one to spell the other.

I Given the file ’words.txt’, and a word in the list,
find all anagrams of that word.

Anagram solution

def is_anagram(input_word, word):
if len(input_word) != len(word):

return False
word_lst = list(word)
for letter in input_word:

try:
word_lst.remove(letter)

except ValueError:
return False

return True

def is_anagram2(input_word, word):
return sorted(input_word) == sorted(word)

def anagram(input_word):
result = []
with open(’words.txt’) as f:

for line in f:
word = line[:-1]
if is_anagram(input_word, word):

result.append(word)
return result

Exercise: Birthday paradox

I If there are 23 students in your class, what are
the chances that two of you have the same
birthday? You can estimate this probability by
generating random samples of 23 birthdays and
checking for matches.

