
Lecture 1: Introduction

Introduction to programming (LT2111)

Markus Forsberg
Språkbanken

University of Gothenburg

2011-09-06

Introduction & Administration

I The main goal of the course is that you will learn
how to program using the programming
language Python.

I Teachers:

Markus Forsberg Johan Roxendal
Course coordinator Course assistant

markus.forsberg@gu.se johan.roxendal@gu.se

Schedule

I Course homepage:
spraakbanken.gu.se/personal/markus/introduction_to_

programming

I We will meet on Tuesdays and Fridays:
I lecture
I assignment supervision
I exercise session

I 45 min + 15 min break + 45 min

spraakbanken.gu.se/personal/markus/introduction_to_programming
spraakbanken.gu.se/personal/markus/introduction_to_programming

Course literature

I Main course book: Python for software design,
how to think like a computer scientist, Allen B.
Downey

I Natural Language Processing with Python,
Steven Bird et al. (we will only use the first
chapters, but it is the main book in the
’Programming in NLP’ course)

I The books are available online for free (linked
from the homepage).

I Paperbacks cost around 25 euro each.
I Python documentation at the Python website:

http://docs.python.org/.

http://docs.python.org/

Lectures

I Tuesdays, 10.15-12.00
I The main goal of the lectures is to help you

grasp the theoretical content of the course.
I Please mail me about parts of the course that

you find especially difficult, and I will try to
include more material about it in the coming
lectures.

I The slides are put on the course homepage
after the lecture (as quickly as I can manage).

Assignments

I Assignment supervision:
Tuesdays, 13.15-15.00
Fridays, 13.15-15.00

I 3 obligatory practical assignments, 1 optional,
but recommended (this week).

I The assignments are done in groups of two.
I Do not make the mistake of being a passive

member of a group! Switch control of the
keyboard frequently!

Exercises

I Exercise sessions: Fridays, 10.15-12.00
I Paper-and-pen programming (except for the

first week, which is practical)
I In the exercise session we solve the week’s

problems (that you should try to solve
beforehand) and discuss alternative solutions.

I Why no computers?

Exam

I Date: week 43 (exact day yet to be decided)
I Grade: Pass with distinction, Pass, or Fail

Computer science crash course

I Computer science is the study of computation.
I computation = problem solving
I Algorithm: a detailed account of how to solve a

problem.
I Programming language: a formal language to

express computations.

Formal vs. natural languages

I Natural languages: what we normally mean by
languages, i.e., what people speak.

I Formal languages: man-made languages
designed for a specific purpose, such as
programming languages.

I Differences:
I ambiguity
I redundancy
I literalness

Programming in a nutshell

I Input (keyboard, file, other devices)
I Output (screen, file, other device)
I Math (addition, multiplication)
I Conditional execution (select what to execute

based on a condition)
I Repetition (usually combined with conditionals)
I That’s it!
I Or is it?

Low-level language: Assembler

section .data
str: db ’Hello world!’, 0Ah
strLen: equ $-str

section .text
global _start

_start:
mov eax,4
mov ebx,1
mov ecx,str
mov edx,strLen
int 80h
mov eax,1
mov ebx,0
int 80h

High-level language: Python

print "Hello world!"

High-level language

I The difference is in the level of abstraction —
details are hidden in a high-level language.

I A high-level language allows us to be much
more productive.

I It also separates us from the machine, which
makes our programs portable.

I However, for every new programming language
you need to learn the abstraction of that
language.

Standing on the shoulders of giants

I Programming is all about building on what
others have done.

I Using a high-level programming language is
exactly that.

I Instead of trying to reinvent the wheel, we often
use code defined by others that helps us solve a
particular problem.

I Python terminology: a library consists of
packages that consist of modules. A module is a
file containing code. (More about this later)

I Python standard library is always available with
the Python program.

I However, we will actually many times reinvent
the wheel just for the practice.

Some Python terminology

I values: basic things a program works with, like
letters and numbers.

I expression: denotes a value, possibly after some
computation (5+5 denotes 10).

I types: every value has a type, e.g., 2 is an
integer, "Hello world!" is a string.

I variables: gives a name to a value. A variable
has the same type as the value.

I Statement : performs an action, such as printing
a string or assigning a name to a value.

Example

$ python
...
>>> type(12)
<type ’int’>

>>> type(12+12)
<type ’int’>

>>> name = 12+12

>>> name
24

>> type(name)
<type ’int’>

When things go wrong

Syntax errors are formal errors that may be lexical or
syntactical.

Runtime errors are errors, also referred to as
exceptions, occurring while running a
program.

Semantic errors are errors where the program
actually runs, but fails to do what we
want.

Last year’s FAQ: Typing some symbols on
a Mac

shift +8 = (
shift +9 =)

alt+8 = [
alt+9 =]

shift+alt+8 = {
shift+alt+9 = }

The logic: parentheses-like symbols on the same
keys.

Last year’s FAQ: What is NLTK?

I NLTK (Natural Language ToolKit) is not a part of
standard Python, it is a Python package that
requires separate installation.

I NLTK covers a wide range of Language
Technology subjects and methods.

I NLTK also provides many Language Technology
resources, e.g., WordNet that we will work with in
assignment 1.

Last year’s FAQ: How do I install NLTK on
my own computer?

I Instructions are found here:
http://www.nltk.org/download

http://www.nltk.org/download

Last year’s FAQ: floating point division

>>> 4/10
0
>>> from __future__ import division
>>> 4/10
0.4

I What is __future__?
I First: changing how something such as ’division’

works, even if it is a good idea, must be made
conservatively, to avoid breaking existing code.

I But programmers are allowed to use the new
division, if they explicitly declare that, hence:
from __future__ import division

I Why the strange name __future__? Python’s
built-in things have names with surrounding
double underscore to avoid that you be
accident would use that name.

Last year’s FAQ: floating point division
(cont.)

>>> 1.0/6
0.16666666666666666

>>> x = 1

>>> y = 6

>>> float(x)/y
0.16666666666666666

Assignment 0: description

I Not obligatory, but highly recommended.
I A hands-on assignment, where you will be

familiarized with both programming in Python
and Language Technology.

I Do not except to understand everything! Just
work your way through the examples.

I Chapter 1 of the NLTK book.
I We will now spend the rest of the lecture on a

live demo to get you started.

