
Exam: Introduction to programming (LT2111)

Date: October 28, 2013, 9.00 – 12.00

Course responsible Richard Johansson, Spr̊akbanken, Department of Swedish

Exam accessories None

Grade limits Pass with distinction: 24p, Pass: 15p, Max: 30p

Please note:

• Write legibly (unreadable = wrong)!

• Make sure that your code has a clear indentation (if it is unclear, then the least favorable
interpretation will be chosen).

• Number the pages, and start every question on a new page.

• Points will be removed for unnecessarily complicated or unstructured solutions.

• You may use built-in functions and methods, unless otherwise stated, but make sure that
you know what they do. If you are unsure, define your own functions.

• If your solution to a question is only partial, please turn it in anyway! Every point counts.

Question 1 of 6: Summing the even numbers (3 points)

Define a function sum even(lst) that sums all even numbers in a list lst. All odd numbers
are ignored. Since this is the first question, we will be nice to you and give you this utility
function:

def is_even(nbr):

return nbr % 2 == 0

Here are a few examples of the output of sum even.

>>> sum_even([7, 8, 3, 7, 6, 1])

14

>>> sum_even(range(10))

20

>>> sum_even([])

0

Question 2 of 6: Finding the longest word in a text file (4 points)

Define a function find longest word(filename) that reads a text file and returns the longest
word in that file. (If there are more than one word with that length, return any of them.) The
file consists of one word per line. For instance, if we process the text file

This
is
a
file
with
some
words
.

you should return the string ’words’. You are free to ignore all encoding issues and file pro-
cessing errors.

Question 3 of 6: Lexical variety (4 points)

The type–token ratio (TTR) is used in many research fields to measure things like child language
development or the effect on the vocabulary of a stroke or Alzheimer’s disease. For a given
document, TTR is defined as the number of word types Nt (that is, the number of distinct
words) divided by the total number of words in the document Nw:

TTR =
Nt

Nw

Define a function ttr(doc) that computes the type–token ratio for a document doc, where
doc is represented as a list of strings. For instance,

>>> ttr([’rose’, ’is’, ’a’, ’rose’, ’is’, ’a’, ’rose’, ’is’, ’a’, ’rose’])

0.3

Question 4 of 6: Readability (5 points)

In Swedish readability research, a numerical measure called LIX (läsbarhetsindex) is popular.
It is a score that is computed for a given document, and it is defined

LIX =
Nw

Ns
+ 100 · Nlw

Nw
,

where Nw is the number of words in the text, Ns the number of sentences, and Nlw the number
of words whose length is greater than 6. A low score (near 0) means that the text is easy, and
a high score (greater than 80) means it is hard.

Define a function lix score(text) that computes LIX for a text. The text has already been
segmented, so the input to the function is a list of sentences, and each sentence is a list of
word strings.

For instance, given the input

[[’The’, ’hedgehog’, ’lives’, ’in’, ’the’, ’barn’], [’His’, ’name’, ’is’, ’Oscar’]]

the function should return the value 15.0, a typical LIX score for texts for children.

Question 5 of 6: Spam filter evaluation (6 points)

Assume we have implemented a spam filter as a class SpamFilter. This class has a method
guess(email text) that takes an email string and returns True if it believes that the message
is spam, otherwise False.

Now we want to evaluate how well our spam filter works. We get a collection of emails and
categorize them manually as spam or non-spam (again, True or False). This is our test set, and
we represent it as a list of tuples where the first item of the tuple is our manual categorization
and the second item the email text. For instance, here is a small test set:

test_set = [(True, "Buy more prescription DRUGS CHEAP!!!! !"),
(False, "Hi, how are you? How did the exam go?"),
(False, "Dear student, Here is the result of your exam in Formal Linguistics."),
(True, "Dear Madam, would you like to win $1000000000000?")]

We can now evaluate the filter by applying it to all the messages in the test set and compare
its guesses to the manual categorizations. We define the accuracy and false positive rate as
follows:

accuracy =
nTT + nFF

n
FPR =

nFT

nFT + nFF

where

• n is the total number of messages in the test set,

• nTT the number of spam classified as spam,

• nFF the number of non-spam classified as non-spam,

• nFT the number of non-spam classified as spam.

Define a method evaluate in the class SpamFilter. When calling f.evaluate(ts) on a spam
filter f, the method returns the accuracy and false positive rate of f as evaluated on the test
set ts. If we use the example test set above, and the third message is misclassified, we should
get the result (0.75, 0.5).

Question 6 of 6: Document similarity (8 points)

In information retrieval systems, it is important to have some way to compare how similar two
documents are. The most widely used document similarity measure is called cosine similarity
and is based on a geometric view of documents. We first represent each document as a vector
(an arrow) in a coordinate system. Each coordinate corresponds to the frequency of one of the
words in the vocabulary. For instance, consider these three documents:

d1 = [’apples’, ’apples’, ’oranges’, ’apples’, ’apples’, ’apples’]

d2 = [’apples’, ’oranges’, ’apples’, ’oranges’, ’oranges’]

d3 = [’oranges’, ’apples’, ’oranges’, ’oranges’, ’oranges’]

This figure shows how the documents are represented. The coordinates of d1 are (5, 1) because
it has an ’apples’ frequency of 5 and an ’oranges’ frequency of 1. In our case the coordinate
system has two dimensions since there are two words in the vocabulary, but in general there
are more dimensions.

We compute the dot product of d1 and d2 by multiplying the coordinates of the two documents
one by one, first the ’apples’ coordinate and then the ’oranges’ coordinate: 5 ·2 + 1 ·3 = 13.
Using the dot product, we can now define the cosine similarity:

cos sim(d1, d2) =
dot(d1, d2)√

dot(d1, d1) ·
√

dot(d2, d2)

Your tasks:

(a, 4p) Implement a function cos sim(doc1, doc2) that computes the cosine similarity be-
tween two documents. The documents doc1 and doc2 are represented as lists of words. Hints:
This could be any two documents, not just about apples or oranges. Use math.sqrt to compute
the square root (

√
).

(b, 4p) Implement a function most similar(d, n, docs) that goes through a document list
docs and returns the n documents most similar to d. Again, d is a list of words; the same is
true for each of the documents in docs. Hint: Try to solve this task even if you are unable to
solve task (a). Then just assume that cos sim has been implemented.

