
Exam: Introduction to programming (LT2111)

Date: December 16, 2013, 9.00 – 12.00

Course responsible Richard Johansson, Spr̊akbanken, Department of Swedish

Exam accessories None

Grade limits Pass with distinction: 24p, Pass: 15p, Max: 30p

Please note:

• If there is something you don’t understand about a question, please ask the course respon-
sible when he comes to the exam room.

• Write legibly (unreadable = wrong)!

• Make sure that your code has a clear indentation (if it is unclear, then the least favorable
interpretation will be chosen).

• Number the pages, and start every question on a new page.

• Points will be removed for unnecessarily complicated or unstructured solutions.

• You may use built-in functions and methods, unless otherwise stated, but make sure that
you know what they do. If you are unsure, define your own functions.

• If your solution to a question is only partial, please turn it in anyway! Every point counts.



Question 1 of 6: Summing numbers (4 points)

Define a function sum less than ten(lst) that computes the sum of those numbers in a list
lst that are less than 10. Here are a few examples of the output of sum less than ten.

>>> sum_less_than_ten([7, 8, 13, 27, -6, 1])

10

>>> sum_less_than_ten(range(20))

45

>>> sum_less_than_ten([])

0

Question 2 of 6: Fixing errors (5 points)

The functions listed in (a) and (b) contain one or more errors and will print exceptions when
run. Correct all errors in the functions so that they run as intended.

(a) A function to sum some numbers that we have read from a file:

def sum_the_numbers(numbers):

output = 0

for n in numbers:

output += n

return output

Here is how the function should be called:

print sum_the_numbers(["1", "77", "3", "8"])

Here is the result:

TypeError: unsupported operand type(s) for +=: ’int’ and ’str’

(b) A function to build a frequency table for the words in a corpus:

def make_frequency_table(wordlist):

table = {}

for word in words:

table[word] += 1

return table

Here is how the function should be called:

print make_frequency_table(["this", "is", "a", "corpus", "in", "a", "list"])

Result:

NameError: global name ’words’ is not defined



Question 3 of 6: Lexicon coverage (5 points)

Define a function lexicon coverage(lexicon, filename) that determines the proportion of
the words in a file that are listed in a lexicon. The lexicon is represented as a Python list. The
file consists of one word per line. For instance, if we process the text file

this
is
a
short
file
with
some
words
in
it

and the lexicon is [’a’, ’an’, ’are’, ’be’, ’in’, ’is’, ’it’, ’on’, ’the’], 4 out of
the 10 words in the file are found in the lexicon, so the return value should be the proportion
4/10 = 0.4.

Question 4 of 6: The most frequent word (5 points)

Define a function most frequent word(words) that returns the most frequent word in a corpus.
If the highest frequency is F and there are several words whose frequency is F , then return
any of those words. The corpus is represented as a list of strings. For example, when running
this code

print most_frequent_word(["this", "is", "a", "corpus", "in", "a", "list"])

the program should print the word a.

Question 5 of 6: Bank accounts (5 points)

Implement two classes Bank and BankAccount. The class Bank should have two methods:

• open new account, which creates a new account for a customer, with a given initial amount
of money;

• get account, which returns the account (a BankAccount object) for a customer.

The class BankAccount should have three methods:

• get balance, which returns the amount of money currently stored in the account;

• deposit, which adds an amount of money to the account;

• withdraw, which takes an amount of money from the account. This method should protest
if you want to withdraw more money than the account contains, for instance by raising an
exception: raise ValueError(error message).

Here is an example program using these classes:

the_bank = Bank()
my_name = "Alice Bob"
the_bank.open_new_account(my_name, 1000)
my_account = the_bank.get_account(my_name)
my_account.withdraw(600)
my_account.deposit(100)
print my_account.get_balance()
my_account.withdraw(600)

The result of running this program should be something like

500

... ValueError: you don’t have that much money!



Question 6 of 6: Part-of-speech tagging (6 points)

Implement a program consisting of two functions: first a function train tagger that trains
a part-of-speech tagger on a training corpus, and then a function run tagger that uses it to
assign part-of-speech tags to the words in an untagged corpus.
Here is an example of how the functions can be used:

tagger = train_tagger("training_corpus_file")
run_tagger(tagger, "untagged_corpus_file")

(a) In the function train tagger, your program goes through a training corpus. This is a text
file where each line is a word/tag pair. The word and the tag are separated by a space. Here is
an example:

This PRONOUN
is VERB
a DETERMINER
file NOUN
and CONJUNCTION
the PUNCTUATION
file NOUN
contains VERB
some DETERMINER
text NOUN
. PUNCTUATION
Please INTERJECTION
file VERB
it PRONOUN
in PREPOSITION
the DETERMINER
drawer NOUN
. PUNCTUATION

Your function train tagger should determine for each word what is the most frequent part-
of-speech tag for that word. In the example file, the word file occurs twice as a NOUN and once
as a VERB, so your program determines that the most frequent tag for this word is NOUN.

Furthermore, your function should find which is the most common tag in general in the
training corpus. In the example, this is NOUN, which occurs four times.

The function should return 1) a dictionary containing the most frequent tag for each observed
word, and 2) the most frequently observed tag in general.
(b) After we have called train tagger, we can use its result to assign tags to words in texts
that we haven’t seen before. Write a function run tagger that goes through a text file with
one word per line, and assigns a tag for each word. Here is an example of such a file:

This
is
a
new
file
.

For each word occurring in the text file, your program should print the most frequent tag in
the training file for that word. If a word occurs that you haven’t observed in the training file,
then print the most frequent tag in general. For the example, this means that your program
will print

PRONOUN
VERB
DETERMINER
NOUN
NOUN
PUNCTUATION


