Exam: Introduction to programming (LT2111)

Date: October 19, 2015, 9.00 — 12.00

Course responsible Richard Johansson, Sprakbanken, Department of Swedish
Exam accessories None
Grade limits Pass with distinction: 24p, Pass: 15p, Max: 30p

Please note:

e If there is something you don’t understand about a question, please ask the course respon-
sible when he comes to the exam room.

e Write legibly (unreadable = wrong)!

e Make sure that your code has a clear indentation (if it is unclear, then the least favorable
interpretation will be chosen).

e Number the pages, and start every question on a new page.
e Points will be removed for unnecessarily complicated or unstructured solutions.

e You may use built-in functions and methods, unless otherwise stated, but make sure that
you know what they do. If you are unsure, define your own functions.

e If your solution to a question is only partial, please turn it in anyway! Every point counts.

Question 1 of 6: Printing the short words (3 points)

Define a function print_short_words(lst, n) that goes through a list 1st of words, and
prints each word whose length is less than n. You can assume that every item in the list is a
string.

For instance, if we call the function as follows:

print_short_words([’Here’, ’are’, ’some’, ’words’, ’.’°], 4)

then we get the following output:

are

Question 2 of 6: Problems, problems (5 points)

(a, 2p) We would like a function to compute the total number of course credits a student has
accumulated at a university. The course credits are stored in a text file such as this one:

Formal_linguistics 7
Programming 7
Natural_language_processing 15
Dialogue_systems 7
Statistical_methods 7
Information_retrieval 7

Our first solution looks like this:

def sum_credits(filename):
total_credits = 0
with open(filename) as f:
for line in f:
course_name, credits = line.split()
total_credits += credits
return total_credits

Here is how the function should be called:
sum_credits(’john_smith_credits.txt’)

If john_smith credits.txt contains the course credits listed above, the result should be 50.
However, the code doesn’t seem to work as intended. Here is what happens:

TypeError: unsupported operand type(s) for +=: ’int’ and ’str’

Please explain the problem and suggest how to correct it.

(b, 3p) The following code collects the frequencies of the words occurring in a corpus.

def get_word_freq_pair(table, word):
for word_freq in table:
if word_freq[0] == word:
return word_freq

def make_frequency_table(words):
table = []
for word in words:
word_freq = get_word_freq_pair(table, word)
if word_freq:
word_freq[1] += 1
else:
table.append([word, 1])
return table

If we call it like this

make_frequency_table([’a’, ’rose’, ’is’, ’a’, ’rose’, ’is’, ’a’, ’rose’])
then we get the result

[[’a’, 3], [’rose’, 3], [’is’, 2]1]

Strictly speaking this code is correct, but it has a flaw that makes impractical. Please explain
what the problem is, and suggest a way to make the program better! (You don’t have to write
a full reimplementation, just an explanation of what you would do.)

Question 3 of 6: Evaluation of a dependency parser (5 points)

A dependency parser carries out a grammatical analysis of a sentence and represents the syn-
tactic structure as a set of links between the words. Each link goes from a head word (the
grammatically dominant one) to a dependent word. In the general case, the links have function
labels such as subject, object, adverbial, etc, but in the simplest case, there are no labels. This
is the case we consider now.

The following figure shows (a) a correct analysis of the sentence They put him in jail, and
(b) an incorrect analysis of the same sentence, where an automatic parser has attached the
preposition incorrectly.

o) 1ﬁ o

They put him in jail They put him in jail

(a) correct tree (b) incorrect tree

A dependency tree (without function labels) can be represented as a list of integer numbers.
Each position in the list corresponds to a token, and the number corresponds to the position
of its head. If the number is 0, then the token at that position has no head (that is, it is a
root token). For instance, the correct tree (a) corresponds to the list [2, 0, 2, 2, 4] and
the incorrect tree (b) to [2, 0, 2, 3, 4]. In both these lists the first number is 2, because
put is the head of They in both trees.

Your task: Write a function evaluate_parser (true_tree, predicted_tree) that computes
the attachment accuracy of a predicted parse tree with respect to a true tree. The attachment
accuracy is defined as the number of correctly attached tokens (that is, their heads are correct)
divided by the total number of tokens.

For instance, here is how we would use the function when comparing the bad tree in (b) to the
correct tree (a).

>>> tree_a = [2, 0, 2, 2, 4]

>>> tree_b = [2, 0, 2, 3, 4]

>>> evaluate_parser(tree_a, tree_b)
0.8

The result is 0.8 since 4 tokens out of 5 are correctly attached.

Question 4 of 6: Lexicon-based part-of-speech tagging (5 points)

A part-of-speech tagger (PoS tagger) is a program that determines the part-of-speech tag (word
class) for a word appearing in a document. One of the simplest imaginable ways that this can
be carried out is to use a tag lexicon that lists words and their corresponding part-of-speech
tags. The lexicon can then be used for automatic tagging simply by looking up words in the
lexicon.

(a, 2p) Implement a function read tag lexicon(file name) that reads a tag lexicon from
a file. Each word in the lexicon, and its corresponding part-of-speech tag, appears on a
single line. The function should store the lexicon in some data structure (for instance a list,
dictionary, set, or a data structure defined by you) and return this structure.

Here is an example of how the tag lexicon file could look:

a determiner
an determiner
big adjective

computer noun
example noun

file noun
in preposition
is verb
of preposition

sleeps verb
this pronoun

(b, 3p) Implement a function lexicon_tagger(lexicon, file name) that goes through
the words in a text file and assigns a part-of-speech tag to each word. The file consists of
tokenized text, so that each line in the file contains one word. The input lexicon is a tag
lexicon returned by the function you developed in (a), and you should assign the tag by
looking up the word in the lexicon (or ’unknown’ if the word is not listed). The words and
their corresponding part-of-speech tags should be printed to the screen.

For instance, assume that we run lexicon tagger with the lexicon listed above and a file
containing the following text:

this

is

an

example

Then the output should look like this:

this pronoun
is verb

an determiner
example noun

Question 5 of 6: Information retrieval (6 points)

We have collected a collection of web documents and tokenized them. Here is an example of
what our collection could look like.
collection = [[’a’, ’dachshund’, ’is’, ’a’, ’kind’, ’of’, ’dog’],

[’a’ , ’cat’, ’is’, ’not’, ’a’, ’dog’] s

[’Tony’, ’is’, ’my’, ’cat’],

[’my’, ’iguana’, ’loves’, ’spaghetti’],

[’a’, ’big’, ’cat’, ’,’, ’a’, ’small’, ’dog’, ’,’, ’a’, ’black’, ’cat’]]
Your task: Write a function search(collection, query_terms, n) that goes through
the documents in collection and checks how many times each document contains a search
term from the list query_terms. The function should return a list of tuples, where each tuple
consists of 1) the number of times any query term occurs in the document, and 2) the docu-

ment itself. Only the n documents where the query terms are most frequent should be returned.

For instance, here is an example of how a pet enthusiast could use the search function.

>>> search(collection, [’cat’, ’dog’l, 2)

[(3, [’a’, ’big’, ’cat’, ’,’, ’a’, ’small’, ’dog’, ’,’, ’a’, ’black’, ’cat’]),
(2, [’a’, ’cat’, ’is’, ’not’, ’a’, ’dog’l)]

Hint. If you have a list 1st, you can use the method 1st.count(x) to determine how many

times x occurs in 1st.

Question 6 of 6: Deriving a polarity lexicon from a corpus (6 points)

In polarity classification, we want to determine whether the author of a document expresses a
positive or negative opinion overall in the document. (This is one of the most basic tasks in
sentiment analysis; in general, we might be interested in all the different opinions expressed
in the document, etc.)

To build a system for polarity classification, one option is to use a polarity lexicon, which lists
evaluative words and what sentiment they typically express. In our case, we use a polarity lexi-
con where the polarity values are stored as numbers that express the strength of the sentiment.
Words expressing a sentiment with a positive polarity correspond to positive numbers, and vice
versa. Here is an example of how such a lexicon could look:

polarity_lexicon = { ’good’:1, ’bad’:-1, ’perfect’:2, ’heavenly’:4, ’disgusting’:-3, ... }

(a, 2p) This lexicon can be used in a simple procedure for determining the overall polarity of
a document: just sum the polarity values of all the words occurring in the document. If the
sum is positive, we say that the overall polarity is positive, and vice versa.

Your task: Write a function guess_polarity(lexicon, document) that tries to determine
the overall polarity in the document. Its inputs should be a polarity lexicon and a document
(a list of words), and it should return either ’positive’ or ’negative’.

(b, 4p) In practice, it is time-consuming to build a polarity lexicon by hand. A more practical
alternative is to derive it from a corpus, and that is what we will do now. Let’s assume that
we have a corpus of documents, where each document is labeled with the overall polarity it
expresses. (Such a corpus can be created e.g. by crawling websites where users can review
products.) Here is an example of a corpus containing such polarity—document pairs:

labeled_docs = [(’positive’, [’this’, ’movie’, ’was’, ’good’]),
(’negative’, [’this’, ’movie’, ’was’, ’really’, ’bad’]),
(’positive’, [’it’, ’is’, ’as’, ’good’, ’as’, ’its’, ’predecessor’]),
(’negative’, [’it’, ’is’, ’so’, ’bad’, ’that’, ’I’, ’have’, ’no’, ’words’])]

This corpus can be used to build a polarity lexicon automatically using the following procedure:
e start with an empty lexicon (that is, all polarity scores are implicitly zero)

e for every document in the corpus, guess its polarity using the current lexicon and the
function you developed in task (a)

e every time you misclassify a positive document, add 1 to the polarity score of each word
occurring in the document

e conversely, every time you misclassify a negative document, subtract 1 from the polarity
score of each word occurring in the document

Your task: Write a function build_polarity_lexicon(labeled docs, n) that creates a
lexicon using the procedure described above. The input labeled docs is a list of polarity—
document pairs (as above), and n an integer that says how many times you should go through
the corpus. The function should return the polarity lexicon.

Congratulations. You just implemented Frank Rosenblatt’s famous perceptron algorithm.

