
Introduction to programming
Lecture 2: Basic programming

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 8, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction

values, expressions, variables, statements

repetition

conditionals

functions and methods

-20pt

UNIVERSITY OF

GOTHENBURG

Overview of this lecture

I recap of previous lecture: basic programming

I lists

I repetition

I conditions

I functions

-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction

values, expressions, variables, statements

repetition

conditionals

functions and methods

-20pt

UNIVERSITY OF

GOTHENBURG

basic programs

I expressions compute values

I values have types

I variables remember values

I a program is a sequence of statements making use of
expressions

I the Python interpreter executes the statements sequentially

-20pt

UNIVERSITY OF

GOTHENBURG

example with Pythontutor

x = 8 + 6

y = 2*x + 1

print(y)

-20pt

UNIVERSITY OF

GOTHENBURG

numbers

I int: integers (whole numbers) such as 5, 1, -7

I float: �oating-point numbers such as 3.14, 5.0, -10.7

I we can use basic arithmetic: + - * / **

I int + int → int, int * int → int, etc
I BUT int / int → �oat (in Python 3)

I �oat + �oat → �oat etc

I �oat + int → �oat etc

-20pt

UNIVERSITY OF

GOTHENBURG

strings

I a string is a piece of text

I strings are written with single or double quotes
I but the quotes are not actually included in the string: they are

there to show where the string begins and ends

I multiline strings can be written with three double quotes (""")

I examples:

s1 = 'a string'

s2 = "another string"

s3 = """a long string spanning

more than one line"""

print(s1)

-20pt

UNIVERSITY OF

GOTHENBURG

check

s1 = "abc"

s1 = abc

s1 = 'abc'

s1 = 'abc"

s1 = ' abc '

-20pt

UNIVERSITY OF

GOTHENBURG

string �arithmetic�

I the + sign has a special meaning for strings: concatenation of
two strings (�gluing�)

I the * sign is used to copy a string multiple times

I examples:

s1 = 'abc'

s2 = "def"

s3 = s1 + s2

print(s3)

s4 = s1 * 5

print(s4)

-20pt

UNIVERSITY OF

GOTHENBURG

substrings

I we can access a part of the string by using index notation []

I s[k] gives us the letter at position k starting at 0

I example:

s = 'this is a string'

print(s[2])

I s[j:k] gives us the part of the string starting at position j up
to the position k but not including k

I in Python terminology, this is called slicing

print(s[5:9])

I similarly:

print(s[5:])

print(s[:9])

-20pt

UNIVERSITY OF

GOTHENBURG

lists

I lists are used to represent sequences of data, e.g., the words
occurring in a document

I in Python, they are written using square brackets []

I example: ['Python', 'programming']

I parts of a list can be accessed just as for strings � indexing
and slicing

l = [12,43,564,1,23]

print(l[4])

print(l[1:3])

I unlike strings, lists can be modi�ed:

l[3] = 88

print(l)

-20pt

UNIVERSITY OF

GOTHENBURG

a slightly more complicated example

mylist = [7, 8, 4, 3]

mylist[0] = 650

mylist[2] = [86, 45]

mylist[1] = [120]

mylist[4] = 1000

print(mylist)

-20pt

UNIVERSITY OF

GOTHENBURG

truth values: Booleans

I the Boolean (bool) type is used to represent logical truth
values

I there are two possible values: True and False

I Boolean values often come from e.g. comparisons, and they
are used in conditional statements (if)

x = 100

y = 150

z = 100

truthvalue1 = x < y

truthvalue2 = x < z

print(truthvalue1)

print(truthvalue2)

-20pt

UNIVERSITY OF

GOTHENBURG

a special value: None

I the special value None is used to represent �empty� results

I its type is called NoneType

I more about this later!

-20pt

UNIVERSITY OF

GOTHENBURG

types: summary

int 5 -7 0 48

�oat 5.0 3.2 0.0 -6.7

str "a string" "abc" " " ""

bool True False

NoneType None

list [12, 41, 8] ["a", "list"] ["s", 5] []

-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction

values, expressions, variables, statements

repetition

conditionals

functions and methods

-20pt

UNIVERSITY OF

GOTHENBURG

things to do with a list of numbers

I what is the sum of the numbers in a list?

-20pt

UNIVERSITY OF

GOTHENBURG

Example: sum the numbers in a list

mylist = [7, 4, 8, 12]

listsum = 0

listsum = listsum + mylist[0]

listsum = listsum + mylist[1]

listsum = listsum + mylist[2]

listsum = listsum + mylist[3]

print(listsum)

I how to do this for a long list?

I how to do this for a list where we don't know the length in
advance?

-20pt

UNIVERSITY OF

GOTHENBURG

Example: sum the numbers in a list (cont)

I set initial value of sum to 0

I for every item x in the list:
I add x to the current value of the sum

I print the sum

-20pt

UNIVERSITY OF

GOTHENBURG

The for statement: repetition

I to convert the idea expressed on the previous slide into Python
code, we use the for statement

I do something for each member of a collection (list, string, . . .)

I in programming jargon, doing something repeatedly is called a
loop

-20pt

UNIVERSITY OF

GOTHENBURG

sum the numbers in a list (properly)

mylist = [7, 4, 8, 12]

listsum = 0

for x in mylist:

listsum = listsum + x

print(listsum)

-20pt

UNIVERSITY OF

GOTHENBURG

indentation of blocks

I to show which statements are to be executed for each step in
a for loop, we indent those statements: put them a bit to
the right of the start of the for

I we say that they are in a separate block

listsum = 0

for x in mylist:

listsum = listsum + x

print(listsum)

-20pt

UNIVERSITY OF

GOTHENBURG

proper indentation is important!

mylist = [7, 4, 8, 12]

listsum = 0

for x in mylist:

listsum = listsum + x

print(listsum)

mylist = [7, 4, 8, 12]

listsum = 0

for x in mylist:

listsum = listsum + x

print(listsum)

-20pt

UNIVERSITY OF

GOTHENBURG

doing something 10 times

steps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for step in steps:

print(step)

for step in range(10):

print(step)

-20pt

UNIVERSITY OF

GOTHENBURG

summing a list of lists of numbers

mylist = [[7, 8], [9, 6, 2], [1, 5, 2, 9], [3]]

listsum = 0

for sublist in mylist:

for x in sublist:

listsum = listsum + x

print(listsum)

-20pt

UNIVERSITY OF

GOTHENBURG

things to do with a list of numbers (again)

I how many numbers are there in the list?

-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction

values, expressions, variables, statements

repetition

conditionals

functions and methods

-20pt

UNIVERSITY OF

GOTHENBURG

printing the largest of two numbers?

I user gives us two numbers x and y

I how can we print a message saying which of them is the
largest (or whether they are equal), e.g.

x is the largest

or

y is the largest

or

x and y are equal

-20pt

UNIVERSITY OF

GOTHENBURG

doing di�erent things depending on a condition

I The if statement will execute a block depending on a condition
I Simplest case:

if x > 1000:

print("x is greater than 1000")

I Selecting one of two alternatives:
if x > 1000:

print("x is greater than 1000")

else:

print("x is not greater than 1000")

I Even more alternatives:
if x > 1000:

print("x is greater than 1000")

elif x < 0:

print("x is less than 0")

else:

print("x is between 0 and 1000")

-20pt

UNIVERSITY OF

GOTHENBURG

printing the largest of two numbers

I assume we are given x and y . . .

if x > y:

print("x is the largest")

elif x < y:

print("y is the largest")

else:

print("x and y are equal")

-20pt

UNIVERSITY OF

GOTHENBURG

conditions involving numbers

< less than

<= less than or equal to

== equal to (note: two "=" signs, not one)

!= not equal to

> greater than

>= greater than or equal to

The result of each of these tests is a bool: True or False.

-20pt

UNIVERSITY OF

GOTHENBURG

conditions involving strings

== equal to

< alphabetically before

t in s test if t is contained inside s

-20pt

UNIVERSITY OF

GOTHENBURG

combining conditions

I not CONDITION

I CONDITION1 and CONDITION2

I CONDITION1 or CONDITION2

-20pt

UNIVERSITY OF

GOTHENBURG

things to do with a list of numbers (again)

I which is the largest number in the list?

-20pt

UNIVERSITY OF

GOTHENBURG

one possible solution

mylist = [7, 4, 8, 12]

maximum = mylist[0]

for x in mylist:

if x > maximum:

maximum = x

print(maximum)

-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction

values, expressions, variables, statements

repetition

conditionals

functions and methods

-20pt

UNIVERSITY OF

GOTHENBURG

summing three lists

I we have three lists and want to print the sum of each of them

I how to avoid this repetition?

mylist1 = [7, 4, 8, 12]

listsum1 = 0

for x in mylist1:

listsum1 = listsum1 + x

print(listsum1)

mylist2 = [3, 9, 11, 17, 6]

listsum2 = 0

for x in mylist2:

listsum2 = listsum2 + x

print(listsum2)

mylist3 = [21, 16]

listsum3 = 0

for x in mylist3:

listsum3 = listsum3 + x

print(listsum3)

-20pt

UNIVERSITY OF

GOTHENBURG

functions

I a function is a part of the program put separately

I we call the function and supply inputs to it

I it will carry out its computations and possibly return an
output

I examples:
l = len('this is a short text')

print('the length of the string is', l)

-20pt

UNIVERSITY OF

GOTHENBURG

built-in and user-de�ned functions

I the functions len and print are examples of built-in
functions: they are part of the Python language

I we can also make our own user-de�ned functions

I bene�ts of declaring functions:
I avoiding repetition
I improving readability of your program by splitting it into

logically separated parts

-20pt

UNIVERSITY OF

GOTHENBURG

declaring functions

I the keyword def is used to declare a function

I examples:

def compute_house_area(length, width):

area = length*width

return area

def print_help_message():

print("Please consult the manual!")

-20pt

UNIVERSITY OF

GOTHENBURG

a special case: functions returning no value

def print_help_message():

print("Please consult the manual!")

I if there is no return statement, then the special value None is
implicitly returned

-20pt

UNIVERSITY OF

GOTHENBURG

summing three lists: better

def sum_list(mylist):

mysum = 0

for x in mylist:

mysum = mysum + x

return mysum

mylist1 = [7, 4, 8, 12]

print(sum_list(mylist1))

mylist2 = [3, 9, 11, 17, 6]

print(sum_list(mylist2))

mylist3 = [21, 16]

print(sum_list(mylist3))

I have a look in Pythontutor. . .

-20pt

UNIVERSITY OF

GOTHENBURG

actually, we are reinventing the wheel. . .

I Python has a number of built-in functions:

mylist = [7, 4, 8, 12]

print(len(mylist))

print(sum(mylist))

print(max(mylist))

print(min(mylist))

-20pt

UNIVERSITY OF

GOTHENBURG

methods

I values in Python can have their own functions

I these functions are called methods

I we call the method m on the value x like this: x.m(inputs)

s = "here is a string"

modified = s.replace("i", "I")

print(modified)

-20pt

UNIVERSITY OF

GOTHENBURG

some methods on strings

s.lower() gives a lowercased copy of s

s.startswith(t) test whether s starts with t

s.endswith(t) test whether s ends with t

s.islower() test if all cased characters in s are lowercase

s.count(t) counts the number of occurrences of t in s

s.split(t) splits s into a list of substrings

s.replace(f, t) gives a copy of s where f is replaced by t

. . .

See http://docs.python.org/3/library/stdtypes.html

http://docs.python.org/3/library/stdtypes.html

-20pt

UNIVERSITY OF

GOTHENBURG

assignment 1

I Using WordNet in NLTK

I https://svn.spraakdata.gu.se/repos/richard/pub/

itp2015_web/assign1.html

I deadline: September 18

https://svn.spraakdata.gu.se/repos/richard/pub/itp2015_web/assign1.html
https://svn.spraakdata.gu.se/repos/richard/pub/itp2015_web/assign1.html

-20pt

UNIVERSITY OF

GOTHENBURG

a quick note about modules (for assignment)

import random

random_number = random.randint(0, 10)

print(random_number)

random_number = random.randint(0, 10)

print(random_number)

	introduction
	values, expressions, variables, statements
	repetition
	conditionals
	functions and methods

