
Introduction to programming

Lecture 3

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 15, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

today's lecture

I last time we saw many new concepts, so today we repeat a bit
I lists
I repetition (iteration) through lists with for
I conditions with if
I functions

I also a bit of new material: mostly to �ll in the missing pieces
for the assignment

-20pt

UNIVERSITY OF

GOTHENBURG

lists

I lists are used to represent sequences of data, e.g., the words
occurring in a document

I in Python, they are written using square brackets []

I example: ['Python', 'programming']

I indexing and slicing to give a part of the list:

l = [12,43,564,1,23]

print(l[4])

print(l[1:3])

I unlike strings, lists can be modi�ed:

l[3] = 88

print(l)

-20pt

UNIVERSITY OF

GOTHENBURG

going through a list: iterating using for

I do something for each member of a collection (list, string, . . .)

I in programming jargon, doing something repeatedly is called a
loop

-20pt

UNIVERSITY OF

GOTHENBURG

example: sum the numbers in a list

numbers = [18, 7, 4, 8, 12, 5]

listsum = 0

for number in numbers:

listsum += number

print(listsum)

note: we might as well have written sum(numbers)

-20pt

UNIVERSITY OF

GOTHENBURG

a list trick: list comprehension

I if we have a list l, we might want to create a new list where
we have applied some operation to all members of l

I examples
I ["a", "sentence"] → ["A", "SENTENCE"]
I [1.2, 7.5, 3.15] → [1, 7, 3]

I list comprehension does the trick:

words = ["a", "short", "sentence"]

capitalized_words = [word.upper() for word in words]

floats = [1.2, 7.5, 3.15]

rounded = [int(number) for number in floats]

-20pt

UNIVERSITY OF

GOTHENBURG

strings

I a string is a piece of text

I in the code, we write them with quotes (single, double, """ for
multiline)

I we can use the + and * signs to concatenate or repeat:

s1 = 'abc'

s2 = "def"

s3 = s1 + s2

print(s3)

s4 = s1 * 5

print(s4)

-20pt

UNIVERSITY OF

GOTHENBURG

string tricks: splitting and joining

I the string method split splits a string into a list of strings
I s.split() splits at spaces
I s.split(separator) splits at separator

I conversely, join takes a list of strings and puts them together
with a separator in between

I separator.join(strings)

I example:

sentence_string = "this is a sentence"

words = sentence_string.split()

for word in words:

print(word)

new_sentence_string = "_".join(words)

print(new_sentence_string)

-20pt

UNIVERSITY OF

GOTHENBURG

some methods on strings

s.lower() gives a lowercased copy of s

s.startswith(t) test whether s starts with t

s.endswith(t) test whether s ends with t

s.islower() test if all cased characters in s are lowercase

s.count(t) counts the number of occurrences of t in s

s.split(t) splits s into a list of substrings

s.replace(f, t) gives a copy of s where f is replaced by t

. . .

See http://docs.python.org/3/library/stdtypes.html

http://docs.python.org/3/library/stdtypes.html

-20pt

UNIVERSITY OF

GOTHENBURG

string tricks: string formatting

I in some cases we want to format several outputs in a nice,
structured way

I with string formatting, we create a string template and insert
variables into it

I easier than concatenating strings with +

I also for printing �xed-width columns

I Python has two di�erent styles of string formatting:
I using %
I using format

gross_salary = 25000

tax_rate = 0.3125

tax = gross_salary * tax_rate

net_salary = gross_salary - tax

print("gross: %s, tax: %s, net: %s" % (gross_salary, tax, net_salary))

-20pt

UNIVERSITY OF

GOTHENBURG

substrings

I we can access a part of the string by using index notation []

I s[k] gives us the letter at position k starting at 0

I example:

s = 'this is a string'

print(s[2])

I s[j:k] gives us the part of the string starting at position j up
to the position k but not including k

I in Python terminology, this is called slicing

print(s[5:9])

I similarly:

print(s[5:])

print(s[:9])

-20pt

UNIVERSITY OF

GOTHENBURG

converting between types

str(x) makes a string

I str(5) gives "5"
I str(5.4) gives "5.4"

int(x) makes an integer number

I int("5") gives 5
I int(5.4) gives 5

�oat(x) makes a �oating-point number

I float("5.4") gives 5.4
I float(5) gives 5.0

-20pt

UNIVERSITY OF

GOTHENBURG

the if statement

-20pt

UNIVERSITY OF

GOTHENBURG

functions

I a function is a part of the program put separately
I we call the function and supply inputs to it
I it will carry out its computations and return an output
I bene�ts of declaring functions:

I avoiding repetition
I reusing later
I improving readability

-20pt

UNIVERSITY OF

GOTHENBURG

example functions

euro_rate = 9.33156

yen_rate = 0.0689876

def kr_to_euros(kr_amount):

euro_amount = kr_amount / euro_rate

return euro_amount

def euros_to_kr(euro_amount):

kr_amount = euro_amount * euro_rate

return kr_amount

-20pt

UNIVERSITY OF

GOTHENBURG

example: printing the words in a sentence line by line

sentence = "this is a sentence"

print_sentence(sentence)

example output:

0: this

1: is

2: a

3: sentence

-20pt

UNIVERSITY OF

GOTHENBURG

example: �nding the longest word in a sentence

sentence = "this is a sentence"

long_word = find_longest_word(sentence)

print(long_word)

should print:

sentence

recall: the built-in function len returns the length of a string

-20pt

UNIVERSITY OF

GOTHENBURG

functions again: local and global variables

I variables written inside a function are called local variables
I they are alive only when the program enters a function

I variables written outside all functions are called global
variables

I they are alive during the whole life of the program

euro_rate = 9.33156

yen_rate = 0.0689876

def kr_to_yen(kr_amount):

yen_amount = kr_amount / yen_rate

return yen_amount

def yen_to_kr(yen_amount):

kr_amount = yen_amount * yen_rate

return kr_amount

-20pt

UNIVERSITY OF

GOTHENBURG

functions calling other functions

euro_rate = 9.33156

yen_rate = 0.0689876

def kr_to_yen(kr_amount):

yen_amount = kr_amount / yen_rate

return yen_amount

def yen_to_kr(yen_amount):

kr_amount = yen_amount * yen_rate

return kr_amount

def euros_to_yen(euro_amount):

kr_amount = euros_to_kr(euro_amount)

yen_amount = kr_to_yen(kr_amount)

return yen_amount

def yen_to_euros(yen_amount):

kr_amount = yen_to_kr(yen_amount)

euro_amount = kr_to_euros(kr_amount)

return euro_amount

-20pt

UNIVERSITY OF

GOTHENBURG

modules

I we can use modules to arrange groups of functions into
logically separate parts

I e.g. a module with our functions to convert currencies

I Python comes with a large number of built-in modules

I you can download modules from the web (e.g. NLTK)

I and you can write new modules yourself

I when telling the program to use a module, we say that we
import it

-20pt

UNIVERSITY OF

GOTHENBURG

importing from a module

I there are di�erent ways to import from a module

import math

print(math.sqrt(100))

from math import sqrt

print(sqrt(100))

-20pt

UNIVERSITY OF

GOTHENBURG

some useful builtin modules

I re: regular expressions for text processing

I calendar and datetime: handling dates and times

I math: mathematical functions such as cos, exp, sqrt

I pickle: writing Python data to a �le

I random: generating pseudorandom numbers

I . . . and many more: see
http://docs.python.org/3/library/index.html

http://docs.python.org/3/library/index.html

-20pt

UNIVERSITY OF

GOTHENBURG

random numbers

import random

random_number = random.randint(0, 10)

print(random_number)

random_number = random.randint(0, 10)

print(random_number)

-20pt

UNIVERSITY OF

GOTHENBURG

importing your own module

I if we have a �le called currencies.py, we can import it from
another program:

import currencies

print(currencies.kr_to_euros(100))

-20pt

UNIVERSITY OF

GOTHENBURG

importing WordNet from NLTK

import nltk.corpus

dog_synsets = nltk.corpus.wordnet.synsets("dog")

or

from nltk.corpus import wordnet

dog_synsets = wordnet.synsets("dog")

or

from nltk.corpus import wordnet as wn

dog_synsets = wn.synsets("dog")

-20pt

UNIVERSITY OF

GOTHENBURG

documenting your programs

I it is important to document the programs you write

I other people may have to read your code

I . . . and you may return after a year!

I in Python, two main ways to document code: comments and
docstrings

-20pt

UNIVERSITY OF

GOTHENBURG

comments example

I comments are mainly used for internal documentation, where
you say how your program works

euro_rate = 9.33156

yen_rate = 0.0689876

def kr_to_euros(kr_amount):

first we compute the amount in kronor by dividing by the

euro exchange rate

euro_amount = kr_amount / euro_rate

now we return the amount in euros

return euro_amount

-20pt

UNIVERSITY OF

GOTHENBURG

docstrings

I docstrings are strings placed in the beginning of a module or
function

I they are used for external documentation: saying what a
program does

"""This module contains functions that convert currencies."""

euro_rate = 9.33156

yen_rate = 0.0689876

def kr_to_euros(kr_amount):

"""Convert a given amount in Swedish kronor to euros."""

return kr_amount / euro_rate

def euros_to_kr(euro_amount):

"""Convert a given amount in euros to Swedish kronor."""

return euro_amount * euro_rate

-20pt

UNIVERSITY OF

GOTHENBURG

docstrings and the Python interpreter

I if you run the Python interpreter interactively, you can use the
help command on a module or function name

I it will then print the docstring for that module or function

Python 2.7.3 (default, Jan 2 2013, 13:56:14)

>>> import currencies

>>> help(currencies)

>>> help(currencies.kr_to_euros)

-20pt

UNIVERSITY OF

GOTHENBURG

generating module documentation pages

I we can use the pydoc tool to make documentation web pages

I e.g. pydoc -w currencies

-20pt

UNIVERSITY OF

GOTHENBURG

user-de�ned types or classes

I programmers can de�ne their own types
I user-de�ned types are called classes

I for instance, NLTK de�nes many classes

I you are already using one such class in the exercise: Synset

I in later lectures, you will see how to de�ne your own classes

-20pt

UNIVERSITY OF

GOTHENBURG

objects, attributes, methods

I values of a class are called objects

I an object may contain its own variables: they are called
attributes

I as we have seen, they may also have their own functions:
methods

I attributes and methods are accessed with dot notation:
I x.attr
I x.method(inputs)

-20pt

UNIVERSITY OF

GOTHENBURG

a look at Synset

if ss is an object of the class Synset:

I ss.hypernyms(): a list of more speci�c kinds

I ss.hyponyms(): a list of more speci�c kinds

I ss.lemmas: list of words corresponding to this concept

I ss.definition: de�nition of the concept

I ss.examples: list of examples

-20pt

UNIVERSITY OF

GOTHENBURG

sets

I sets are collections where each item appears only once

word_set = set(["this", "is", "a", "set", "of", "words"])

print(word_set)

word_set.add("another")

word_set.add("this")

print(word_set)

-20pt

UNIVERSITY OF

GOTHENBURG

sets and lists...

word_set = set(["this", "is", "a", "set", "of", "words"])

word_list = ["this", "is", "a", "list", "of", "words"]

print(word_set)

print(word_list)

print("words" in word_set)

print("words" in word_list)

I di�erences between sets and lists:
I lists can have multiple identical items
I lists remember the order of insertion
I sets are faster for some operations, e.g. membership testing
I no indexing or slicing for sets

I similarities between sets and lists:
I we can use for to go through the members
I len gives the size of the set
I membership test: x in s

I converting: list(s) and set(l)

-20pt

UNIVERSITY OF

GOTHENBURG

next lecture: counting words

I recall this example from the �rst lecture!

I which are the missing pieces?

with open("göteborgsposten.txt") as f:

table = {}

for line in f:

for word in line.split():

if word in table:

table[word] += 1

else:

table[word] = 1

print(max(table, key=table.get))

