
Introduction to programming

Lecture 4: processing �les and counting words

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 22, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

overview of today's lecture

I �le processing
I splitting into sentences and words
I character encoding

I counting words with dictionaries

I sorting and maximizing

I introduction to the next assignment

-20pt

UNIVERSITY OF

GOTHENBURG

example: most frequent word in GP

with open('gp.txt', encoding='utf-8') as f:

table = {}

for line in f:

for word in line.split():

if word in table:

table[word] += 1

else:

table[word] = 1

print(max(table, key=table.get))

-20pt

UNIVERSITY OF

GOTHENBURG

overview

�le and text processing

dictionaries

sorting and maximizing

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

�les: the basics

I a �le is a piece of data that is persistently stored in a

computer's storage device (e.g. a hard disk)

I in most operating systems, there are �le names that help us

access our �les

I from the computer's perspective, the content of a �le is just a
bunch of bytes (that is, numbers between 0 and 255)

I a �le has no meaning on its own: a program needs to interpret
its content

I a text �le is a �le that contains letters only: no formatting

information (unlike Word, PDF, or HTML �les)

I we will now see how Python can read strings from text �les

(non-textual data in later lectures)

-20pt

UNIVERSITY OF

GOTHENBURG

opening a �le for reading

I before Python can access the contents of a �le, the �le needs

to be opened

I use builtin function open to open a �le for reading

with open("textfile.txt") as f:

...

I f is a �le object

-20pt

UNIVERSITY OF

GOTHENBURG

what to do with a �le object?

I basic usage: read the whole text �le as a string:

with open("textfile.txt") as f:

all_content = f.read()

print("The content of the file is: %s" % all_content)

I when we have read all content, read will return an empty

string if called again

-20pt

UNIVERSITY OF

GOTHENBURG

reading a �le line by line

I read one line from a �le

with open("textfile.txt") as f:

first_line = f.readline()

print("The first line is: %s" % first_line)

I we can iterate line by line through a �le as in a list:

with open("textfile.txt") as f:

for line in f:

print("The line is: %s" % line)

-20pt

UNIVERSITY OF

GOTHENBURG

writing to a �le

I to write to a text �le, we need to open for writing ("w"):

I then we write a text using print, with an extra input
specifying where the output should go:

with open("output.txt", "w") as f:

print("this is the output to the file", file=f)

-20pt

UNIVERSITY OF

GOTHENBURG

exception handling

I what happens if we try to read a �le that does not exist?

with open("doesnotexist.txt") as f:

content = f.read()

print(content)

I an exception will be raised when something goes wrong

I we will exit whatever we were doing, and if the exception is
not handled, the program will stop

try:

with open("doesnotexist.txt") as f:

content = f.read()

print(content)

except IOError:

print("I couldn't open the file!")

-20pt

UNIVERSITY OF

GOTHENBURG

splitting into sentences and words

I for a given text �le, we want to print the words one by one

I �rst (incorrect) solution:

def print_words(filename):

with open(filename) as f:

for sen in f:

for word in sen.split():

print(word)

-20pt

UNIVERSITY OF

GOTHENBURG

splitting into sentences and words with NLTK

I NLTK includes sentence and word splitting functions:

I better solution:

from nltk.tokenize import sent_tokenize, word_tokenize

def print_words(filename):

with open(filename) as f:

content = f.read()

for sen in sent_tokenize(content):

for word in word_tokenize(sen):

print(word)

-20pt

UNIVERSITY OF

GOTHENBURG

going multilingual: Unicode strings

I Python uses Unicode strings to represent a sequence of

abstract �letters�

I three levels of string processing:
I byte encoding: what is stored in a �le
I Unicode letters: what we keep in a Python string
I glyphs from a font: rendered on screen or page

I in Python 2, strings contained bytes; in Python 3 they contain
Unicode letters

I so in Python 3, len('Göteborg') == 8
I . . . but in Python 2, len('Göteborg') == 9 (typically)

-20pt

UNIVERSITY OF

GOTHENBURG

three levels of character processing . . .

-20pt

UNIVERSITY OF

GOTHENBURG

rendering . . .

I rendering may be nontrivial in some scripts:

kaf, teh, 'alef, beh →
I even in Latin scripts, we have ligatures such as �

-20pt

UNIVERSITY OF

GOTHENBURG

taking care of the encoding

I nowadays, the UTF-8 encoding is the most commonly used

I here's how we force open to use the UTF-8 encoding:

with open('textfile.txt', encoding='utf-8') as f:

...

I if no encoding is speci�ed, Python uses the default encoding of

your system

I on some machines, the default can be an older encoding, so

you might need to specify the encoding when opening a �le

-20pt

UNIVERSITY OF

GOTHENBURG

overview

�le and text processing

dictionaries

sorting and maximizing

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

dictionaries

I dictionaries in Python are used to store key�value

mappings:

Richard Johansson → richard.johansson@gu.se

Ildikó Pilán → ildiko.pilan@gu.se

Simon Dobnik → simon.dobnik@ling.gu.se

Luis Nieto Piña → luis.nieto.pina@gu.se

-20pt

UNIVERSITY OF

GOTHENBURG

example: looking up email addresses

I we write the dictionary using curly brackets: { }

I similarly to lists, we use square brackets to access the

dictionary by its key

initial email dictionary

email_dict = { "Richard":"richard.johansson@svenska.gu.se",

"Johan":"johan.roxendal@svenska.gu.se" }

we add another name

email_dict["Simon"] = "simon.dobnik@ling.gu.se"

print(email_dict["Johan"])

-20pt

UNIVERSITY OF

GOTHENBURG

be careful with nonexistent keys

I the dictionary will give an exception if you try to access a
nonexistent key:

email_dict = { "Richard":"richard.johansson@svenska.gu.se",

"Johan":"johan.roxendal@svenska.gu.se" }

crash!

print(email_dict["Ritva"])

I you can test if a key is present:

email_dict = { "Richard":"richard.johansson@svenska.gu.se",

"Johan":"johan.roxendal@svenska.gu.se" }

if "Ritva" in email_dict:

print(email_dict["Ritva"])

else:

print("not found!")

I alternative: print(email_dict.get("Ritva", "not found!"))

-20pt

UNIVERSITY OF

GOTHENBURG

example: counting words

from nltk.tokenize import sent_tokenize, word_tokenize

def compute_word_frequencies(filename):

frequencies = {}

with open(filename) as f:

content = f.read()

for sen in sent_tokenize(content):

for word in word_tokenize(sen):

if word in frequencies:

frequencies[word] += 1

else:

frequencies[word] = 1

return frequencies

freqs = compute_word_frequencies("test.txt")

print(freqs["the"])

-20pt

UNIVERSITY OF

GOTHENBURG

example: counting bigrams

import nltk

def compute_bigram_frequencies(filename):

...

bfreqs = compute_bigram_frequencies("test.txt")

print(bfreqs["New York"])

-20pt

UNIVERSITY OF

GOTHENBURG

example: what's the probability of the next word?

P(next word is York|current word is New) =
count(New York)

count(New)

def transition_probability(w1, w2):

...

print(transition_probability("New", "York"))

-20pt

UNIVERSITY OF

GOTHENBURG

overview

�le and text processing

dictionaries

sorting and maximizing

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

sorting

I sometimes we need to sort elements of a list (or other
collection) into some order:

I some_list.sort() sorts a list in place
I sorted(some_collection) creates a new list and sorts it

the_list = [8, 7, 3, 6, 11]

print(sorted(the_list))

the_list.sort()

print(the_list)

-20pt

UNIVERSITY OF

GOTHENBURG

detour: default input values

I we can de�ne a default value for a function input:

def count_words(sentence, separator=" "):

return len(sentence.split(separator))

print(count_words("this is a test sentence"))

print(count_words("this_is_another_sentence"))

print(count_words("this_is_another_sentence", "_"))

-20pt

UNIVERSITY OF

GOTHENBURG

detour: calling a function with named inputs

I the inputs can be speci�ed by name instead of order

I this is particularly useful when there are many inputs

def count_words(sentence, separator=" "):

return len(sentence.split(separator))

print(count_words(sentence="this_is_another_sentence",

separator="_"))

print(count_words(separator="_",

sentence="this_is_another_sentence"))

print(count_words("this_is_another_sentence",

separator="_"))

illegal!

#print(count_words(separator="_",

"this_is_another_sentence"))

-20pt

UNIVERSITY OF

GOTHENBURG

de�ning your own order

I list.sort() and sorted use the natural ordering of the
things in the list

I that is: they use the comparison x < y

I sometimes you need to de�ne your own sorting criteria as a
key function

I the key function returns some value by which you want to sort
I is is speci�ed as the input key

I another useful input: reverse

-20pt

UNIVERSITY OF

GOTHENBURG

sorting example

def number_of_vowels(w):

count = 0

for c in w:

if c in ['a', 'e', 'i', 'o', 'u']:

count += 1

return count

word_list = ["This", "is", "a", "list", "of", "words"]

print(sorted(word_list))

print(sorted(word_list, key=len))

print(sorted(word_list, key=number_of_vowels))

print(sorted(word_list, key=len, reverse=True))

this program will print:

['This', 'a', 'is', 'list', 'of', 'words']

['a', 'is', 'of', 'This', 'list', 'words']

['This', 'is', 'a', 'list', 'of', 'words']

['words', 'This', 'list', 'is', 'of', 'a']

-20pt

UNIVERSITY OF

GOTHENBURG

max and min

I the max function returns the maximal element of a collection

I conversely, min returns the minimal element

I max and min both allow you to specify your own ordering with

key

word_list = ["This", "is", "a", "list", "of", "words"]

print(max(word_list))

print(max(word_list, key=len))

print(max(word_list, key=number_of_vowels))

-20pt

UNIVERSITY OF

GOTHENBURG

the most frequent word in a frequency dictionary

frequencies = compute_word_frequencies('some_file.txt')

print(max(frequencies, key=frequencies.get))

-20pt

UNIVERSITY OF

GOTHENBURG

one more data type: tuples

I tuples are �xed-size lists that cannot be changed
I a tuple with 2 items is called a pair
I a tuple with 3 items is called a triple
I a tuple with n items is called an n-tuple

I tuples are more e�cient than normal lists

I they are written with round brackets: t = (3, "xyz")

I useful fact about tuples: they can be compared and sorted
I will sort by �rst item, then by second item, . . .

pairs1 = [(6, "xyz"), (3, "ghi"), (5, "abc")]

pairs2 = [("xyz", 6), ("ghi", 3), ("abc", 5)]

print(sorted(pairs1))

print(sorted(pairs2))

-20pt

UNIVERSITY OF

GOTHENBURG

back to dictionaries

I if we have a dictionary d, the method d.items() gives a

collection of key�value pairs

email_dict = { "Richard":"richard.johansson@gu.se",

"Ildiko":"ildiko.pilan@gu.se",

"Simon":"simon.dobnik@ling.gu.se" }

for pair in email_dict.items():

name = pair[0]

email = pair[1]

print("Name: %s, email: %s" % (name, email))

-20pt

UNIVERSITY OF

GOTHENBURG

example: sorting alphabetically and by frequency

import nltk

def compute_word_frequencies(filename):

...

return frequencies

def get_frequency(word_freq_pair):

return word_freq_pair[1]

freqs = compute_word_frequencies("test.txt")

word_freq_pairs = freqs.items()

for word_freq_pair in sorted(word_freq_pairs):

print(word_freq_pair)

for word_freq_pair in sorted(word_freq_pairs,

key=get_frequency,

reverse=True):

print(word_freq_pair)

-20pt

UNIVERSITY OF

GOTHENBURG

overview

�le and text processing

dictionaries

sorting and maximizing

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

assignment 2: introduction

I for a given �le, compute its Flesch�Kincaid readability score

I the �le is given by a �le name

I in addition, print the most �di�cult� words and sentences

-20pt

UNIVERSITY OF

GOTHENBURG

hint: counting syllables

I English orthography is notoriously messy

I you decide on a suitable simpli�cation

I comment on your simpli�cations in your report

I just counting the vowels is not enough: e.g. �goose� does not

have three syllables

I Deadline is October 2

	file and text processing
	dictionaries
	sorting and maximizing
	introduction to assignment 2

