Introduction to programming
Lecture 4: processing files and counting words

UNIVERSITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

September 22, 2015

overview of today’s lecture

v

file processing

» splitting into sentences and words
» character encoding

» counting words with dictionaries

v

sorting and maximizing

v

introduction to the next assignment

UNIVERSITY OF
GOTHENBURG

example: most frequent word in GP

with open(’gp.txt’, encoding=’utf-8’) as f:
table = {}
for line in f:
for word in line.split():
if word in table:
table[word] += 1
else:
table[word] = 1
print (max(table, key=table.get))

CQ unversiTY oF
S GOTHENBURG

overview

file and text processing

UNIVERSITY OF
GOTHENBURG

files: the basics

v

a file is a piece of data that is persistently stored in a
computer’s storage device (e.g. a hard disk)

> in most operating systems, there are file names that help us
access our files

» from the computer’s perspective, the content of a file is just a
bunch of bytes (that is, numbers between 0 and 255)

» a file has no meaning on its own: a program needs to interpret
its content

» a text file is a file that contains letters only: no formatting
information (unlike Word, PDF, or HTML files)

» we will now see how Python can read strings from text files
(non-textual data in later lectures)

UNIVERSITY OF
GOTHENBURG

opening a file for reading

» before Python can access the contents of a file, the file needs
to be opened

» use builtin function open to open a file for reading

with open("textfile.txt") as f:

» fis a file object

UNIVERSITY OF
GOTHENBURG

what to do with a file object?

> basic usage: read the whole text file as a string:

with open("textfile.txt") as f:
all_content = f.read()
print ("The content of the file is: %s" % all_content)

» when we have read all content, read will return an empty
string if called again

UNIVERSITY OF
GOTHENBURG

reading a file line by line

» read one line from a file

with open("textfile.txt") as f:
first_line = f.readline()
print("The first line is: %s" % first_line)
> we can iterate line by line through a file as in a list:
with open("textfile.txt") as f:
for line in f:
print ("The line is: %s" % line)

UNIVERSITY OF
GOTHENBURG

writing to a file

> to write to a text file, we need to open for writing ("w"):

» then we write a text using print, with an extra input
specifying where the output should go:

with open("output.txt", "w") as f:
print("this is the output to the file", file=f)

UNIVERSITY OF
GOTHENBURG

exception handling

» what happens if we try to read a file that does not exist?

with open("doesnotexist.txt") as f:
content = f.read()
print(content)

> an exception will be raised when something goes wrong

» we will exit whatever we were doing, and if the exception is
not handled, the program will stop
try:
with open("doesnotexist.txt") as f:
content = f.read()
print(content)
except IOError:
print ("I couldn’t open the file!")

UNIVERSITY OF
GOTHENBURG

splitting into sentences and words

» for a given text file, we want to print the words one by one
» first (incorrect) solution:
def print_words(filename):
with open(filename) as f:
for sen in f:
for word in sen.split():
print (word)

UNIVERSITY OF
GOTHENBURG

splitting into sentences and words with NLTK

» NLTK includes sentence and word splitting functions:

> better solution:

from nltk.tokenize import sent_tokenize, word_tokenize
def print_words(filename) :
with open(filename) as f:
content = f.read()
for sen in sent_tokenize(content):
for word in word_tokenize(sen):
print (word)

UNIVERSITY OF
GOTHENBURG

going multilingual: Unicode strings

» Python uses Unicode strings to represent a sequence of
abstract “letters”
> three levels of string processing:
» byte encoding: what is stored in a file
» Unicode letters: what we keep in a Python string
» glyphs from a font: rendered on screen or page
» in Python 2, strings contained bytes; in Python 3 they contain
Unicode letters
» so in Python 3, len(’Géteborg’) == 8
» ...but in Python 2, len(’Géteborg’) == 9 (typically)

UNIVERSITY OF
GOTHENBURG

|+ N [y a vlalw|lo|lw|s
K

E A RN B4 Y oo wlalels

== ~[a | =]= |- =3 R R P M

:
T
(
8
H
X
h
w LTy
£
[}
&
[

u

UTF-8
encodin

lok
rendering *
[]o]
g |

UNIVERSITY OF
GOTHENBURG

three levels of character processing

rendering . ..

» rendering may be nontrivial in some scripts:

kaf, teh, ‘alef, beh — &._1\35

» even in Latin scripts, we have ligatures such as fi

UNIVERSITY OF
GOTHENBURG

taking care of the encoding

UNIVERSITY OF
GOTHENBURG

nowadays, the UTF-8 encoding is the most commonly used

here's how we force open to use the UTF-8 encoding:

with open(’textfile.txt’, encoding=’utf-8’) as f:

if no encoding is specified, Python uses the default encoding of
your system

on some machines, the default can be an older encoding, so
you might need to specify the encoding when opening a file

overview

dictionaries

UNIVERSITY OF
GOTHENBURG

dictionaries

» dictionaries in Python are used to store key—value
mappings:

Richard Johansson — richard.johansson@gu.se
lldiké Pilan — ildiko.pilan@gu.se

Simon Dobnik — simon.dobnik®@ling.gu.se
Luis Nieto Pifia — luis.nieto.pina@gu.se

UNIVERSITY OF
GOTHENBURG

example: looking up email addresses

» we write the dictionary using curly brackets: { }

» similarly to lists, we use square brackets to access the
dictionary by its key

initial email dictionary

email_dict = { "Richard":"richard. johansson@svenska.gu.se",
"Johan":"johan.roxendal@svenska.gu.se" }

we add another name

email_dict["Simon"] = "simon.dobnik@ling.gu.se"

print(email_dict["Johan"])

UNIVERSITY OF
GOTHENBURG

be careful with nonexistent keys

UNIVERSITY OF
GOTHENBURG

the dictionary will give an exception if you try to access a
nonexistent key:

email_dict = { "Richard":"richard.johansson@svenska.gu.se",
"Johan'":"johan.roxendal@svenska.gu.se" }

crash!

print(email_dict["Ritva"])

you can test if a key is present:

email_dict = { "Richard":"richard.johansson@svenska.gu.se",
"Johan'":"johan.roxendal@svenska.gu.se" }
if "Ritva" in email_dict:
print(email_dict["Ritva"])
else:
print("not found!")

alternative: print(email_dict.get("Ritva", "not found!"))

example: counting words

from nltk.tokenize import sent_tokenize, word_tokenize

def compute_word_frequencies(filename):
frequencies = {}
with open(filename) as f:
content = f.read()
for sen in sent_tokenize(content):
for word in word_tokenize(sen):
if word in frequencies:
frequencies[word] += 1
else:
frequencies[word] = 1
return frequencies

freqs = compute_word_frequencies("test.txt")
print (freqs["the"])

UNIVERSITY OF
GOTHENBURG

example: counting bigrams

import nltk

def compute_bigram_frequencies(filename) :

bfreqs = compute_bigram_frequencies("test.txt")
print (bfreqs["New York"])

E unwersiTy oF
S8 GOTHENBURG

example: what's the probability of the next word?

count(New York)

P(next word is York|current word is New) = t(New)
count(New

def transition_probability(wl, w2):

print(transition_probability("New", "York"))

UNIVERSITY OF
GOTHENBURG

overview

sorting and maximizing

UNIVERSITY OF
GOTHENBURG

sorting

» sometimes we need to sort elements of a list (or other
collection) into some order:

» some_list.sort() sorts a list in place
» sorted(some_collection) creates a new list and sorts it

the_list = [8, 7, 3, 6, 11]
print (sorted(the_list))
the_list.sort()

print(the_list)

UNIVERSITY OF
GOTHENBURG

detour: default input values

» we can define a default value for a function input:

def count_words(sentence, separator=" "):
return len(sentence.split(separator))

print (count_words("this is a test sentence"))
print (count_words("this_is_another_sentence"))

print (count_words("this_is_another_sentence", "_"))

UNIVERSITY OF
GOTHENBURG

detour: calling a function with named inputs

>

>

UNIVERSITY OF
GOTHENBURG

the inputs can be specified by name instead of order
this is particularly useful when there are many inputs

def count_words(sentence, separator=" "):
return len(sentence.split(separator))

print (count_words(sentence="this_is_another_sentence",
separator="_"))

print (count_words(separator="_",
sentence—"thls_is_another_sentence"))

print (count_words("this_is_another_sentence",
separator="_"))

illegal!
#print (count_words (separator="_",
"this_is_another_sentence"))

defining your own order

» list.sort() and sorted use the natural ordering of the
things in the list
» that is: they use the comparison x < y

» sometimes you need to define your own sorting criteria as a
key function

» the key function returns some value by which you want to sort
» is is specified as the input key

» another useful input: reverse

UNIVERSITY OF
GOTHENBURG

sorting example

def number_of_vowels(w):
count = 0
for ¢ in w:
if ¢ in [’a’, ’e’, ’i’, ?0?, u’]:
count += 1
return count

word_list = ["This", "is", "a", "list", "of", "words"]

print(sorted(word_list))
print(sorted(word_list, key=len))
print(sorted(word_list, key=number_of_vowels))
print(sorted(word_list, key=len, reverse=True))

this program will print:

[*This’, ’a’, ’is’, ’list’, ’of’, ’words’]
[’a’, ’is’, ’0f?, ’This’, ’list’, ’words’]
[*This’, ’is’, ’a’, ’list’, ’of’, ’words’]
[’words’, ’This?, ’list’, ’is’, ’o0f’, ’a’]

UNIVERSITY OF
GOTHENBURG

max and min

» the max function returns the maximal element of a collection
» conversely, min returns the minimal element

» max and min both allow you to specify your own ordering with
key

word_list = ["This", "is", "a", "list", "of", "words"]
print (max(word_list))

print (max(word_list, key=len))
print (max(word_list, key=number_of_vowels))

UNIVERSITY OF
GOTHENBURG

the most frequent word in a frequency dictionary

frequencies = compute_word_frequencies(’some_file.txt’)

print (max(frequencies, key=frequencies.get))

C unveRsITY OF
S8 GOTHENBURG

one more data type: tuples

v

tuples are fixed-size lists that cannot be changed

> a tuple with 2 items is called a pair
» a tuple with 3 items is called a triple
» a tuple with n items is called an n-tuple

» tuples are more efficient than normal lists
> they are written with round brackets: t = (3, "xyz")

» useful fact about tuples: they can be compared and sorted
» will sort by first item, then by second item, ...

pairsl
pairs2

[(6, "xyz"), (3, "ghi"), (5, "abc")]
[("xyz", 6), ("ghi", 3), ("abc", 5)]

print(sorted(pairsil))
print(sorted(pairs2))

UNIVERSITY OF
GOTHENBURG

back to dictionaries

» if we have a dictionary d, the method d.items() gives a
collection of key—value pairs

email_dict = { "Richard":"richard.johansson@gu.se",
"Ildiko":"ildiko.pilan@gu.se",
"Simon":"simon.dobnik@ling.gu.se" }

for pair in email_dict.items():
name = pair[0]
email = pair[1]
print ("Name: %s, email: ¥%s" % (name, email))

UNIVERSITY OF
GOTHENBURG

example: sorting alphabetically and by frequency

import nltk
def compute_word_frequencies(filename):

return frequencies

def get_frequency(word_freq_pair):
return word_freq_pair[1]

freqs = compute_word_frequencies("test.txt")

word_freq_pairs = freqs.items()

for word_freq_pair in sorted(word_freq_pairs):
print (word_freq_pair)

for word_freq_pair in sorted(word_freq_pairs,
key=get_frequency,
reverse=True) :
print(word_freq_pair)

UNIVERSITY OF
GOTHENBURG

overview

introduction to assignment 2

UNIVERSITY OF
GOTHENBURG

assignment 2: introduction

» for a given file, compute its Flesch—Kincaid readability score
» the file is given by a file name

» in addition, print the most “difficult” words and sentences

UNIVERSITY OF
GOTHENBURG

hint: counting syllables

» English orthography is notoriously messy
» you decide on a suitable simplification
» comment on your simplifications in your report

> just counting the vowels is not enough: e.g. “goose” does not
have three syllables

Deadline is October 2

v

UNIVERSITY OF
GOTHENBURG

	file and text processing
	dictionaries
	sorting and maximizing
	introduction to assignment 2

