
Introduction to programming
Lecture 5

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 29, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

the exam

I location: Viktoriagatan 30

I time: October 19, 9:00�12:00, make sure to be on time!

I bring a valid ID document

I you will need to register using GUL at least a week
before

I select �Ladok Services�, then �Examination Sign-up�
I if you have trouble registering, ask the administrators at FLoV

I in lecture 7, we will go through an old exam

http://www.styrdokument.adm.gu.se/digitalAssets/1344/1344035_rules-for-examinations.pdf

http://www.styrdokument.adm.gu.se/digitalAssets/1344/1344035_rules-for-examinations.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

Viktoriagatan 30

-20pt

UNIVERSITY OF

GOTHENBURG

overview of today's lecture

I recap last lecture

I more about repetition: while, continue, break, recursion

I higher-order functions: functions using functions

I introduction to user-de�ned types: classes

-20pt

UNIVERSITY OF

GOTHENBURG

overview

recap �les, dictionaries, sorting

while loops and recursion

higher-order functions

classes and objects

-20pt

UNIVERSITY OF

GOTHENBURG

opening, reading, writing, . . .

def read_a_file(filename):

with open(filename) as f:

content = f.read()

return content

def write_some_text(filename, text):

with open(filename, "w") as f:

print(text, file=f)

-20pt

UNIVERSITY OF

GOTHENBURG

dictionaries

tag_dict = { 'dog': 'noun',

'in': 'preposition',

'nice': 'adjective' }

tag_dict['who'] = 'relative pronoun'

tag_dict['little'] = 'adjective'

for word in ['nice', 'and', 'little']:

if word in tag_dict:

tag = tag_dict[word]

print("The part-of-speech tag of %s is %s" % (word, tag))

else:

print("%s is not listed" % word)

for word in tag_dict:

print("%s -> %s" % (word, tag_dict[word]))

-20pt

UNIVERSITY OF

GOTHENBURG

example: counting words

from nltk.tokenize import word_tokenize, sent_tokenize

def compute_word_frequencies(filename):

frequencies = {}

with open(filename) as f:

content = f.read()

for sen in sent_tokenize(content):

for word in word_tokenize(sen):

if word in frequencies:

frequencies[word] += 1

else:

frequencies[word] = 1

return frequencies

freqs = compute_word_frequencies("test.txt")

print(freqs["the"])

-20pt

UNIVERSITY OF

GOTHENBURG

sorting

I either thelist.sort() or sorted(thelist)
I the �rst alternative sorts the list in place, while the second

creates a new list
I the second alternative can be used on any collection

I sorted(list_of_strings, key=len)
I sort and sorted are higher-order functions: they use another

function as input (key)
I if no key is given, we will use the natural order (<)

I sorted(list_of_strings, key=len, reverse=True)

-20pt

UNIVERSITY OF

GOTHENBURG

tuples

I tuples are �xed-size lists that cannot be changed
I a tuple with 2 items is called a pair
I a tuple with 3 items is called a triple
I a tuple with n items is called an n-tuple

I tuples are more e�cient than normal lists

I they are written with round brackets: t = (3, "xyz")

I like lists, we access its item using square brackets: t[0]

-20pt

UNIVERSITY OF

GOTHENBURG

returning multiple values

I tuples are often used to return multiple values from a function

def get_first_and_last_name(full_name):

...

return (first_name, last_name)

p = get_first_and_last_name("John Smith")

first = p[0]

last = p[1]

print(first)

I if a function returns multiple values, we can get them nicely if

we use tuple unpacking

first, last = get_first_and_last_name("John Smith")

print(first)

-20pt

UNIVERSITY OF

GOTHENBURG

ordering and sorting tuples

I useful fact about tuples: they can be compared
I will compare by �rst item, then by second item, . . .

I . . . so if we have a list of tuples, it can be sorted

pairs1 = [(6, "xyz"), (3, "ghi"), (5, "abc")]

pairs2 = [("xyz", 6), ("ghi", 3), ("abc", 5)]

print(sorted(pairs1))

print(sorted(pairs2))

-20pt

UNIVERSITY OF

GOTHENBURG

key�value tuples from dictionaries

I if we have a dictionary d, the method d.items() gives a list

of key�value pairs

email_dict = { "Richard":"richard.johansson@svenska.gu.se",

"Johan":"johan.roxendal@svenska.gu.se",

"Simon":"simon.dobnik@ling.gu.se" }

for name, email in email_dict.items():

print("Name: %s, email: %s" % (name, email))

-20pt

UNIVERSITY OF

GOTHENBURG

example: sorting alphabetically and by frequency

import nltk

def compute_word_frequencies(filename):

...

return frequencies

freqs = compute_word_frequencies("test.txt")

word_freq_pairs = freqs.items()

for word, freq in sorted(word_freq_pairs):

print("%s: %s" % (word, freq))

for word, freq in sorted(word_freq_pairs, key=freqs.get,

reverse=True):

print "%s: %s" % (word, freq)

-20pt

UNIVERSITY OF

GOTHENBURG

overview

recap �les, dictionaries, sorting

while loops and recursion

higher-order functions

classes and objects

-20pt

UNIVERSITY OF

GOTHENBURG

more about looping: while

I a while loop looks just like an if: it executes a block of code

if a condition is true

I the di�erence: while will do it again and again until the

condition is false

I for instance: loop forever with while True

-20pt

UNIVERSITY OF

GOTHENBURG

example: reading user input

I the builtin function input reads a line from the user

line = input()

while line != 'quit':

print("The line is: %s" % line)

line = input()

-20pt

UNIVERSITY OF

GOTHENBURG

break and continue

I break interrupts an ongoing for or while loop

I continue interrupts the current step and goes to the start of

the block

while True:

line = input()

if line == 'quit':

break

if line == 'ignore':

continue

print("The line is: %s" % line)

-20pt

UNIVERSITY OF

GOTHENBURG

one more way to repeat: recursion

I recursion: a function that calls itself

I why does this work � why doesn't it go on

forever?

I a recursive function f contains at least
two parts:

I a base case: if the input is simple
enough, the return value can be
computed without further recursion

I a recursive call: the function f calls
itself with a simpler thing as an input

I the typical use of recursion is in nested

data structures: trees, lists in lists, . . .

-20pt

UNIVERSITY OF

GOTHENBURG

example: summing a nested list of numbers

I use isinstance(x, t) to test if the value x is of the type t

def sum_nested(x):

if isinstance(x, list):

sum = 0

for item in x:

sum += sum_nested(item)

return sum

else:

return x

testlist = [1, 4, [3, 8], [7, [2, 6], 9], 11]

print(sum_nested(testlist))

-20pt

UNIVERSITY OF

GOTHENBURG

example: depth of a nested list of numbers

def nested_list_depth(x):

if isinstance(x, list):

maxdepth = 0

for item in x:

d = nested_list_depth(item)

if d > maxdepth:

maxdepth = d

return maxdepth + 1

else:

return 0

testlist = [1, 4, [3, 8], [7, [2, 6], 9], 11]

print(nested_list_depth(testlist))

-20pt

UNIVERSITY OF

GOTHENBURG

example: the factorial function

I the factorial function is de�ned

n! = 1 · . . . · n

def for_factorial(n):

product = 1

for number in range(1, n+1):

product = product * number

return product

def rec_factorial(n):

if n <= 1:

return 1

else:

return n * rec_factorial(n-1)

print(for_factorial(6))

print(rec_factorial(6))

I if you can use for instead, do it!

-20pt

UNIVERSITY OF

GOTHENBURG

summary: di�erent types of looping / repetition

four di�erent ways to do things repeatedly, ordered from simplest

to most complex and powerful:

I list comprehension: [f(x) for x in some_list]
I transforming a list

I for:
I going through all members in a given collection
I doing something a �xed number of times: range(N)

I while:
I doing something an unspeci�ed number of times (or forever)

I recursion:
I processing tree-structured or nested data

-20pt

UNIVERSITY OF

GOTHENBURG

overview

recap �les, dictionaries, sorting

while loops and recursion

higher-order functions

classes and objects

-20pt

UNIVERSITY OF

GOTHENBURG

functions with other functions as input

I a function that takes another function as an input is called a

higher-order function

I example: sorted(list_of_strings, key=len)

I example: do_twice is a higher-order function, print_twice
isn't

def do_twice(f, x):

f(x)

f(x)

def print_twice(something):

print(something)

print(something)

do_twice(print, 'hello')

print_twice(len('hello'))

-20pt

UNIVERSITY OF

GOTHENBURG

example: maximizing w.r.t. some given function

I we have some items in a list and we want to �nd the

maximum according to some measure
I but the measure will be de�ned by the user!

def max_by(collection, measure):

max_item = None

max_value = None

for item in collection:

value = measure(item)

if max_value == None or value > max_value:

max_item = item

max_value = value

return max_item

strings = ["this", "is", "a", "list", "of", "strings"]

print(max_by(strings, len))

-20pt

UNIVERSITY OF

GOTHENBURG

example: processing words

import nltk

def print_words(filename, sen_splitter, word_splitter):

with open(filename) as f:

content = f.read()

for sen in sen_splitter(content):

for word in word_splitter(sen):

...

eng_sen_splitter = nltk.tokenize.sent_tokenize

eng_word_splitter = nltk.tokenize.word_tokenize

print_words("english.txt", eng_sen_splitter, eng_word_splitter)

chi_sen_spliter = ...

chi_word_spliter = ...

print_words("chinese.txt", chi_sen_splitter, chi_word_splitter)

-20pt

UNIVERSITY OF

GOTHENBURG

Chinese word segmentation

I in Chinese, word splitting is not trivial:

example borrowed from Liang Huang

-20pt

UNIVERSITY OF

GOTHENBURG

anonymous functions

I sometimes we need �throwaway� functions whose only purpose

is to be used with a higher-order function

I we can use anonymous functions using the keyword lambda

lst = ['this', 'is', 'a', 'test', '.']

def number_of_t(s):

return s.count('t')

print(sorted(lst, reverse=True, key=number_of_t))

print(sorted(lst, reverse=True, key=lambda s: s.count('t')))

-20pt

UNIVERSITY OF

GOTHENBURG

overview

recap �les, dictionaries, sorting

while loops and recursion

higher-order functions

classes and objects

-20pt

UNIVERSITY OF

GOTHENBURG

recap from lecture 3: classes and objects

I programmers can de�ne their own types
I user-de�ned types are called classes
I the values are called objects

I for instance, NLTK de�nes many classes

I you have already used one such class: Synset

I each object contains its own attributes and methods
I x.attr
I x.method(inputs)

-20pt

UNIVERSITY OF

GOTHENBURG

example: representing persons

I assume we have a class Person that represents some

properties of a person

I every person has a few attributes
I weight, height, temperature

I the method get_temperature returns the temperature of the

person

I the method compute_bmi computes the body mass index

joe = Person(weight=80, height=175, temperature=37)

print(joe.temperature)

print(joe.get_temperature())

print(joe.compute_bmi())

-20pt

UNIVERSITY OF

GOTHENBURG

de�ning your own classes

I you declare a class using the class keyword

I methods are written inside the class and de�ned with def

I note: the �rst input of each method is called self and refers

to the current object

I the special method __init__ is called the constructor and is

called when an object is created

-20pt

UNIVERSITY OF

GOTHENBURG

example: a class describing properties of a person

class Person (object):

def __init__(self, w, h, t):

self.weight = w

self.height = h

self.temp = t

def get_temperature(self):

return self.temp

def compute_bmi(self):

meters = self.height / 100

bmi = self.weight/(meters*meters)

return bmi

john = Person(80, 175, 37)

print(john.compute_bmi())

-20pt

UNIVERSITY OF

GOTHENBURG

example: address book

I assume we have a class AddressBook that contains the

method lookup

I lookup returns an object of the type PersonData

I PersonData contains the attributes name, email, phone,

birthday, . . .

addressbook = ...

richards_data = addressbook.lookup("Richard")

print(richards_data.birthday)

-20pt

UNIVERSITY OF

GOTHENBURG

example: the person database

I the class PersonData is an example of a class that just holds

some data: no methods except the constructor

I typical use of the constructor: setting initial values of the

attributes

class PersonData(object):

def __init__(self, n, e, p, b):

self.name = n

self.email = e

self.phone = p

self.birthday = b

addressbook = ...

richards_data = addressbook.lookup("Richard")

print(richards_data.birthday)

-20pt

UNIVERSITY OF

GOTHENBURG

example: address book

I we create new objects of a class using the class name, e.g.

PersonData(...) and AddressBook()

class AddressBook(object):

def __init__(self):

self.database = {}

...

self.database["Richard"] = PersonData("Richard",

"some_email@gu.se",

"031-7864418",

"July 9")

def lookup(self, name):

return self.database[name]

addressbook = AddressBook()

richards_data = addressbook.lookup("Richard")

print(richards_data.birthday)

-20pt

UNIVERSITY OF

GOTHENBURG

why classes and objects?

I we could have implemented the address book using a

dictionary instead of AddressBook and a tuple instead of

PersonData

I . . . but our solution is more understandable because the class

de�nitions tell what we mean

I just like we divide the code into separate functions to make it

manageable, we divide our data into separate objects

I more about object-oriented design in the next lecture

-20pt

UNIVERSITY OF

GOTHENBURG

programming paradigms

I object-oriented programming styles and programming
languages emphasize classes and objects

I they build abstractions around the data
I examples of object-oriented languages: Java, C++

I functional styles and languages emphasize higher-order
functions, lambdas, and recursion

I they build abstractions by combining functions
I examples of functional languages: Haskell, ML, Lisp

I Python is a pragmatic object-oriented language but includes

some features from functional languages: higher-order

functions and lambdas

-20pt

UNIVERSITY OF

GOTHENBURG

next two lectures

I lecture 6: more object-oriented programming; a little bit about

the theory of algorithms and data structures

I lecture 7: mainly course recap, example exam

	recap files, dictionaries, sorting
	while loops and recursion
	higher-order functions
	classes and objects

