
Introduction to programming
Lecture 6

UNIVERSITY OF

GOTHENBURG

Richard Johansson

October 6, 2015



-20pt

UNIVERSITY OF

GOTHENBURG

overview of today's lecture

I some details about the 3rd assignment

I two useful variants of dictionaries

I basic theory about algorithm complexity

I more object-oriented programming

I de�ning your own data structures � if we have time



-20pt

UNIVERSITY OF

GOTHENBURG

assignment 3

I in assignment 3 you will work on the problem of language
identi�cation

I given some text, guess which language it has

I we solve this problem by creating language pro�les for a set

of languages, to which the unknown texts are compared

I a pro�le is a frequency table of letter combinations, which we
call n-grams

I the n refers to the number of letters

I for example, ing is a frequent 3-gram in English, so if it is also

frequent in the text, then the text is likely in English



-20pt

UNIVERSITY OF

GOTHENBURG

comparing a document pro�le to a language pro�le



-20pt

UNIVERSITY OF

GOTHENBURG

collecting n-gram statistics

def collect_ngram_statistics(words, dictionary, n):

pad = ' '*(n-1)

for word in words:

padded_word = '%s%s%s' % (pad,word,pad)

index = 0

while index+n <= len(padded_word):

ngram = padded_word[index:index+n]

if ngram in dictionary:

dictionary[ngram] += 1

else:

dictionary[ngram] = 1

index += 1



-20pt

UNIVERSITY OF

GOTHENBURG

example: collecting bigrams



-20pt

UNIVERSITY OF

GOTHENBURG

running the program

I when you execute a Python �le (from the editor or from the

command line), that �le is called the main program

I you can test if a Python �le is executed as a main program:

if __name__ == '__main__':

print("This Python file is run as a main program.")



-20pt

UNIVERSITY OF

GOTHENBURG

command-line arguments

I when running a program, you can get its command-line
arguments from the list sys.argv:

import sys

if __name__ == '__main__':

inputfile = sys.argv[1]

outputfile = sys.argv[2]

... do something with inputfile and outputfile ...

I for instance, assuming that this code is in dosomething.py:

python dosomething.py input.txt output.txt

I . . . then the variable inputfile will be "input.txt" and

outputfile will be "output.txt"



-20pt

UNIVERSITY OF

GOTHENBURG

data persistence

I when our program has carried out some work, we might want

to save it so that we can reuse it later
I we have already seen how to write to a text �le:

with open('output.txt', 'w') as f:

print('this is the output to the text file', file=f)

I pickling (in other languages called serializing): converting a

Python object to raw data (a string) so that it can be written

to a �le and later reloaded
I we can save our data without having to de�ne a �le format

import pickle

with open('output.data', 'wb') as f:

pickle.dump(some_object, f)

...

with open('output.data', 'rb') as f:

reloaded = pickle.load(f)



-20pt

UNIVERSITY OF

GOTHENBURG

example: saving and loading a frequency table

import nltk

import sys

import pickle

def compute_frequencies(filename):

...

return frequencies

if __name__ == '__main__':

inputfile = sys.argv[1]

outputfile = sys.argv[2]

freqs = compute_frequencies(inputfile)

with open(outputfile, 'wb') as f:

pickle.dump(freqs, f)

import sys

import pickle

if __name__ == '__main__':

inputfile = sys.argv[1]

testword = sys.argv[2]

with open(inputfile, 'rb') as f:

freqs = pickle.load(f)

print(freqs[testword])



-20pt

UNIVERSITY OF

GOTHENBURG

two useful types of dictionaries

I defaultdict and Counter

I they live in the collections module in the standard library

I they behave just like normal dictionaries, but have some

additional advantages to make them more practical

I https://docs.python.org/3/library/collections.html

https://docs.python.org/3/library/collections.html


-20pt

UNIVERSITY OF

GOTHENBURG

recap: making a frequency table

document = ["this", "is", "a", "collection", "of",

"words", "and", "it", "is", "extracted",

"from", "a", "text"]

freqs = {}

for word in document:

if word in freqs:

freqs[word] += 1

else:

freqs[word] = 1

print(freqs)



-20pt

UNIVERSITY OF

GOTHENBURG

using a defaultdict

I a defaultdict is like a normal dictionary, but it will make a

new value for keys it hasn't seen before

from collections import defaultdict

document = ["this", "is", "a", "collection", "of",

"words", "and", "it", "is", "extracted",

"from", "a", "text"]

freqs = defaultdict(int)

for word in document:

freqs[word] += 1



-20pt

UNIVERSITY OF

GOTHENBURG

using a Counter

I a Counter (note the capital C) is a dictionary specialized for

frequency counting

from collections import Counter

document = ["this", "is", "a", "collection", "of",

"words", "and", "it", "is", "extracted",

"from", "a", "text"]

# almost like before

freqs = Counter()

for word in document:

freqs[word] += 1

# to get the most frequent:

print(freqs.most_common(3))



-20pt

UNIVERSITY OF

GOTHENBURG

using a Counter (even simpler)

from collections import Counter

document = ["this", "is", "a", "collection", "of",

"words", "and", "it", "is", "extracted",

"from", "a", "text"]

freqs = Counter(document)



-20pt

UNIVERSITY OF

GOTHENBURG

example: counting the part-of-speech tags for each word

The DT

last JJ

thing NN

they PRP

needed VBD

was VBD

another DT

drag-down JJ

blow NN

. .

'' ''

That DT

measure NN

could MD

compel VB

... ...



-20pt

UNIVERSITY OF

GOTHENBURG

example: counting the part-of-speech tags for each word
(code)

from collections import defaultdict, Counter

stats = defaultdict(Counter)

with open('tagged_corpus.txt') as f:

for l in f:

word, tag = l.split()

stats[word][tag] += 1

print(stats['measure'])



-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction to the theory of algorithms

more object-oriented programming

making your own data structures



-20pt

UNIVERSITY OF

GOTHENBURG

complexity of algorithms

I apart from being correct, we prefer that our program
I does its job in reasonable time
I doesn't �ll the whole memory of the machine

I in general, the time and the memory consumption of an

algorithm depend on the size of the input

I we will have a look at the time complexity: the relation
between input size and time

I conversely, there is a notion of memory complexity

I we'll start by comparing a few di�erent sorting algorithms



-20pt

UNIVERSITY OF

GOTHENBURG

the �idiot sort algorithm�

1. are the elements sorted yet?

2. if not, shu�e the elements randomly and check again



-20pt

UNIVERSITY OF

GOTHENBURG

measuring the time of the idiot sort algorithm

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25



-20pt

UNIVERSITY OF

GOTHENBURG

the selection sort algorithm

1. put the lowest element at the �rst position

2. put the second lowest element at the second position

3. . . .



-20pt

UNIVERSITY OF

GOTHENBURG

the quicksort algorithm

I if the list is empty or has just one element, we're done

I else

1. select a pivot element p
2. quicksort the sublist L of elements less than p

3. quicksort the sublist G of elements greater than p

4. arrange the elements in the order L, p, G



-20pt

UNIVERSITY OF

GOTHENBURG

execution time of selection sort (blue) and quicksort (green)

0 50 100 150 200
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012



-20pt

UNIVERSITY OF

GOTHENBURG

notation for time complexity

I we use the ordo notation for time complexity

I for instance, locating an element in a list (if x in lst) of

length N has a time complexity of O(N)

I this means that the relation between time and the size N is

something like

time = something · N + something

where something is a constant number that depends on your

machine, the programming language, etc

I we can distinguish average-case and worst-case complexity



-20pt

UNIVERSITY OF

GOTHENBURG

some common terminology

I an algorithm with a time complexity of O(N) is said to run in

linear time

I O(1): constant time

I O(N2): quadratic time

I O(N3): cubic time

I O(logN): logarithmic time

I O(expN): exponential time



-20pt

UNIVERSITY OF

GOTHENBURG

reasoning about time complexity

I when determining the time complexity, we try to reason about

how many steps the algorithm will take, depending on the

input size N

I in general
I a single loop over the whole input gives O(N)

I (assuming each step takes constant time!)

I a loop inside a loop gives O(N) · O(N) = O(N2)
I or equivalently, calling an O(N) function inside a loop

I but one loop after another gives O(N) + O(N) = O(N)



-20pt

UNIVERSITY OF

GOTHENBURG

examples

I what is the time complexity of the function max in Python?

I it just goes through all the elements once, so linear (O(N))
I (assuming that we don't use any complicated key function)

I what is the time complexity of selection sort?
I it has a loop inside a loop, so quadratic (O(N2))



-20pt

UNIVERSITY OF

GOTHENBURG

examples

I what is the time complexity of the function max in Python?
I it just goes through all the elements once, so linear (O(N))
I (assuming that we don't use any complicated key function)

I what is the time complexity of selection sort?
I it has a loop inside a loop, so quadratic (O(N2))



-20pt

UNIVERSITY OF

GOTHENBURG

examples

I what is the time complexity of the function max in Python?
I it just goes through all the elements once, so linear (O(N))
I (assuming that we don't use any complicated key function)

I what is the time complexity of selection sort?

I it has a loop inside a loop, so quadratic (O(N2))



-20pt

UNIVERSITY OF

GOTHENBURG

examples

I what is the time complexity of the function max in Python?
I it just goes through all the elements once, so linear (O(N))
I (assuming that we don't use any complicated key function)

I what is the time complexity of selection sort?
I it has a loop inside a loop, so quadratic (O(N2))



-20pt

UNIVERSITY OF

GOTHENBURG

data structures

I we use data structures to store the data that our program
processes

I lists, sets, dictionaries, . . .

I the selection of a data structure is a tradeo�
I list: we remember order; fast access; quite fast to add elements

at the end but slow elsewhere; slow to test membership
I set: we don't remember order; fast to add elements; fast to

test membership
I dictionary: key�value mapping; we don't remember insertion

order; fast lookup by key; slow lookup by value

I in some cases, we may need to develop our own data
structures

I see last part of this lecture



-20pt

UNIVERSITY OF

GOTHENBURG

time complexity of our common data structures

I see https://wiki.python.org/moin/TimeComplexity

I list:
I accessing an item (lst[i]) takes constant time
I append takes constant time (practically)
I insert/delete take linear time (especially near beginning)
I membership test (if x in lst) takes linear time

I dictionary:
I lookup (d[key]) takes constant time (practically)
I insertion (d[key] = value) takes constant time (practically)
I key membership test takes constant time (practically)
I value membership test takes linear time

I set:
I add takes constant time (practically)
I membership test takes constant time (practically)

I sorting in Python has a time complexity of O(N · logN)

https://wiki.python.org/moin/TimeComplexity


-20pt

UNIVERSITY OF

GOTHENBURG

example: counting the number of unique elements in a list

def count_unique(lst):

seen_before = []

for x in lst:

if x not in seen_before:

seen_before.append(x)

return len(seen_before)



-20pt

UNIVERSITY OF

GOTHENBURG

counting unique elements

0 50 100 150 200
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

list
set



-20pt

UNIVERSITY OF

GOTHENBURG

memory complexity, brie�y

I we want to count the number of tokens in a corpus

I two implementations:

1. load the corpus into memory, count all the tokens
2. read the corpus line by line, add the number of tokens on each

line to a counter

I which implementation is most e�cient in terms of memory?

1. memory complexity linear in the corpus size
2. memory complexity linear in the maximum line length



-20pt

UNIVERSITY OF

GOTHENBURG

memory complexity, brie�y

I we want to count the number of tokens in a corpus

I two implementations:

1. load the corpus into memory, count all the tokens
2. read the corpus line by line, add the number of tokens on each

line to a counter

I which implementation is most e�cient in terms of memory?

1. memory complexity linear in the corpus size
2. memory complexity linear in the maximum line length



-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction to the theory of algorithms

more object-oriented programming

making your own data structures



-20pt

UNIVERSITY OF

GOTHENBURG

recap: declaring a class



-20pt

UNIVERSITY OF

GOTHENBURG

example: phrase structure trees

I a phrase structure tree is a

tree commonly used to represent

syntactic structure

I it consists of phrases and words

I a phrase consists of a phrase

label (e.g. NP, VP, . . . ) and a

list of children (words or other

phrases)



-20pt

UNIVERSITY OF

GOTHENBURG

example: phrase structure trees

w1 = Word("John")

w2 = Word("hit")

w3 = Word("the")

w4 = Word("ball")

p1 = Phrase("NP", [w1])

p2 = Phrase("NP", [w3, w4])

p3 = Phrase("VP", [w2, p2])

p4 = Phrase("S", [p1, p3])

p4.printout()

print(w4.depth())

S:

NP:

John

VP:

hit

NP:

the

ball

3



-20pt

UNIVERSITY OF

GOTHENBURG

phrase structure trees: the code

class Word(object):

def __init__(self, word):

self.word = word

self.parent = None

def printout(self, ind):

print(" "*ind + self.word)

def depth(self):

if not self.parent:

return 0

else:

return 1 + self.parent.depth()

class Phrase(object):

def __init__(self, label, children):

self.parent = None

for c in children:

c.parent = self

self.children = children

self.label = label

def printout(self, ind = 0):

print(" "*ind + self.label+":")

for c in self.children:

c.printout(ind + 4)

def depth(self):

if not self.parent:

return 0

else:

return 1 + self.parent.depth()



-20pt

UNIVERSITY OF

GOTHENBURG

inheritance

I we can say that two classes share some methods by declaring
them as derived from a common more general superclass

I some methods are shared between the classes, others are not

I this is how we write:

class SomeSubClass(SomeSuperClass):

...

I we say that the subclass inherits methods from the superclass



-20pt

UNIVERSITY OF

GOTHENBURG

example of design with inheritance

I a hierarchy of inheritance can be quite deep:
class Person(object):

...

class Student(Person):

...

class Teacher(Person):

...

class Undergrad(Student):

...

I note: if isinstance(x, Undergrad), then we also have

isinstance(x, Person) and isinstance(x, Student)



-20pt

UNIVERSITY OF

GOTHENBURG

example of design with inheritance

class Person(object):

def __init__(self, name, pnr):

...

class Student(Person):

...

def register_at_course(self, course):

...

class PhDStudent(Student):

...

def add_publication(self, article):

...



-20pt

UNIVERSITY OF

GOTHENBURG

phrase structure trees with inheritance

class Node(object):

def depth(self):

if not self.parent:

return 0

else:

return 1 + self.parent.depth()

class Word(Node):

def __init__(self, word):

self.word = word

self.parent = None

def printout(self, ind):

print(" "*ind + self.word)

class Phrase(Node):

def __init__(self, label, children):

self.parent = None

for c in children:

c.parent = self

self.children = children

self.label = label

def printout(self, ind = 0):

print(" "*ind + self.label+":")

for c in self.children:

c.printout(ind + 4)



-20pt

UNIVERSITY OF

GOTHENBURG

overview

introduction to the theory of algorithms

more object-oriented programming

making your own data structures



-20pt

UNIVERSITY OF

GOTHENBURG

developing our own data structures: a linked list

I a linked list is a data structure consisting of a chain of links,

where each link contains a piece of data

I advantages compared to a normal Python list: easy and fast to

insert, especially at the start of the list

I disadvantages: complicated and slow to get the n-th item

class LinkedList(object):

...

the_list = LinkedList()

the_list.add_first("a string")

the_list.add_first("another string")

print(the_list.get_first())



-20pt

UNIVERSITY OF

GOTHENBURG

linked list implementation

class Link(object):

def __init__(self, data, next):

self.data = data

self.next = next

class LinkedList(object):

def __init__(self):

self.first = None

def add_first(self, data):

self.first = Link(data, self.first)

def get_first(self):

if self.first:

return self.first.data

def remove_first(self, data):

if self.first:

self.first = self.first.next

the_list = LinkedList()

the_list.add_first("a string")

the_list.add_first("another string")

print(the_list.get_first())



-20pt

UNIVERSITY OF

GOTHENBURG

iterators and iterables

I an iterator is an object that has a method called __next__
I __next__ will generate a new item each time it is called

I an iterable is an object that has a method called __iter__

that will return an iterator

I if an object is iterable, then we can use it in a for
I all data structures such as lists, sets, dictionaries are iterable
I if we are going through a list, the iterator will remember the

position where we are currently looking

for x in some_iterable:

... do something with x ...



-20pt

UNIVERSITY OF

GOTHENBURG

example

class NumberGenerator(object):

def __init__(self):

self.current = 0

def __next__(self):

self.current += 1

if self.current > 10:

raise StopIteration

return self.current

class NumberSequence(object):

def __iter__(self):

return NumberGenerator()

numbers = NumberSequence()

for n in numbers:

print(n)



-20pt

UNIVERSITY OF

GOTHENBURG

making the linked list iterable

class Link(object):

def __init__(self, data, next):

self.data = data

self.next = next

class LinkedListIterator(object):

def __init__(self, start):

self.current = start

def __next__(self):

if not self.current:

raise StopIteration

else:

out = self.current.data

self.current = self.current.next

return out

class LinkedList(object):

def __init__(self):

self.first = None

...

def __iter__(self):

return LinkedListIterator(self.first)

the_list = LinkedList()

the_list.add_first("test1")

the_list.add_first("test2")

the_list.add_first("test3")

for x in the_list:

print(x)

print(list(the_list))



-20pt

UNIVERSITY OF

GOTHENBURG

developing our own data structures: letter tree (trie)

I dictionaries are e�cient for storing words, but
sometimes we need to do more complex things:

I �nding all words starting with h, or
alphabetically between abc and abx

I �nding the words most similar to the
misspelled word hering

I �nding anagrams
I . . .

I a trie is a data structure for strings where all

strings sharing a pre�x are represented as a tree

node



-20pt

UNIVERSITY OF

GOTHENBURG

trie methods

I to test whether a string s is stored in the trie
subtree:

I if s is empty, then return True if the node is
an end node (yellow), False otherwise

I otherwise, if we have a subtree for the �rst
letter f of s

I check if the rest of s is contained in the
subtree

I otherwise, return False

I to insert a string s into a trie subtree:
I if s is empty, set the current node as an end

node (yellow)
I otherwise, make sure that there is a subtree for

the �rst letter f of s
I . . . then insert the rest of s into that subtree



-20pt

UNIVERSITY OF

GOTHENBURG

implementing the trie

class TrieNode(object):

def __init__(self):

self.children = {}

self.end = False

def insert(self, s, position):

if position == len(s):

self.end = True

else:

letter = s[position]

if not self.children.has_key(letter):

child = TrieNode()

self.children[letter] = child

self.children[letter].insert(s, position+1)

def contains(self, s, position):

if position == len(s):

return self.end

letter = s[position]

if not self.children.has_key(letter):

return False

return self.children[letter].contains(s, position+1)

class Trie(object):

def __init__(self):

self.root = TrieNode()

def insert(self, s):

self.root.insert(s, 0)

def contains(self, s):

return self.root.contains(s,0)

t = Trie()

t.insert("hello")

t.insert("he-man")

t.insert("herring")

t.insert("horrible")

print(t.contains("herring"))

print(t.contains("hell"))


	introduction to the theory of algorithms
	more object-oriented programming
	making your own data structures

