Introduction to programming
Lecture 6

UNIVI ITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

October 6, 2015

overview of today’s lecture

v

some details about the 3rd assignment

v

two useful variants of dictionaries

v

basic theory about algorithm complexity

v

more object-oriented programming

v

defining your own data structures — if we have time

UNIVERSITY OF
GOTHENBURG

assignment 3

» in assignment 3 you will work on the problem of language
identification

» given some text, guess which language it has
» we solve this problem by creating language profiles for a set
of languages, to which the unknown texts are compared

» a profile is a frequency table of letter combinations, which we
call n-grams

» the n refers to the number of letters

» for example, ing is a frequent 3-gram in English, so if it is also
frequent in the text, then the text is likely in English

UNIVERSITY OF
GOTHENBURG

comparing a document profile to a language profile

Category Document Out Of
Profile Frofile Place
most frequent | TH |—| TH 0
ER ING 3
ON ON 0
LE ER 2
ING AND| !
AND ED no-match = max
least frequent | ...

sum = distance measure

C unveRsITY OF
S8 GOTHENBURG

collecting n-gram statistics

def collect_ngram_statistics(words, dictionary, n):
pad = ’ ’*(n-1)
for word in words:
padded_word = ’Ys¥%s¥s’ % (pad,word,pad)
index = 0
while index+n <= len(padded_word):
ngram = padded_word[index:index+n]
if ngram in dictionary:
dictionary[ngram] += 1
else:
dictionary[ngram] = 1
index += 1

UNIVERSITY OF
GOTHENBURG

example: collecting bigrams

running the program

» when you execute a Python file (from the editor or from the
command line), that file is called the main program
» you can test if a Python file is executed as a main program:

if __name__ == ’__main__7’:

print ("This Python file is run as a main program.")

UNIVERSITY OF
GOTHENBURG

command-line arguments

UNIVERSITY OF
GOTHENBURG

when running a program, you can get its command-line
arguments from the list sys.argv:
import sys
if __name__ == ’__main__’:
inputfile = sys.argv[1]
outputfile = sys.argv[2]

. do something with inputfile and outputfile ...

for instance, assuming that this code is in dosomething. py:
python dosomething.py input.txt output.txt

...then the variable inputfile will be "input.txt" and
outputfile will be "output.txt"

data persistence

» when our program has carried out some work, we might want
to save it so that we can reuse it later
» we have already seen how to write to a text file:

with open(’output.txt’, ’w’) as f:
print(’this is the output to the text file’, file=f)

» pickling (in other languages called serializing): converting a
Python object to raw data (a string) so that it can be written
to a file and later reloaded

» we can save our data without having to define a file format
import pickle
with open(’output.data’, ’wb’) as f:

pickle.dump(some_object, f)

with open(’output.data’, ’rb’) as f:
reloaded = pickle.load(f)

UNIVERSITY OF
GOTHENBURG

example: saving and loading a frequency table

import nltk import sys
import sys import pickle
import pickle
if __name__ == ’__main__’:

def compute_frequencies(filename): inputfile = sys.argv[1]

e testword = sys.argv[2]

return frequencies with open(inputfile, ’rb’) as f:

freqs = pickle.load(f)

if __name__ == ’__main__’: print (freqs[testword])

inputfile = sys.argv[1]

outputfile = sys.argv[2]

freqs = compute_frequencies(inputfile)

with open(outputfile, ’wb’) as f:
pickle.dump(freqgs, f)

UNIVERSITY OF
GOTHENBURG

two useful types of dictionaries

v

defaultdict and Counter

v

they live in the collections module in the standard library

v

they behave just like normal dictionaries, but have some
additional advantages to make them more practical

v

https://docs.python.org/3/library/collections.html

UNIVERSITY OF
GOTHENBURG

https://docs.python.org/3/library/collections.html

recap: making a frequency table

document = ["this", "is", "a", "collection", "of",
"words", "and", "it", "is", "extracted",
llfromll llall “teXt”]

freqs = {}

for word in document:
if word in fregs:
freqs[word] += 1
else:
freqs[word] = 1

print (fregs)

UNIVERSITY OF
GOTHENBURG

using a defaultdict

» a defaultdict is like a normal dictionary, but it will make a
new value for keys it hasn’t seen before

from collections import defaultdict

1SU "
2

document = ["this", a", "collection", "of",
Uwordsﬂ, "and"’ "it", "is

Hfromu, uau, Htextﬂ]

", "extracted",

freqs = defaultdict(int)
for word in document:
fregs[word] += 1

UNIVERSITY OF
GOTHENBURG

using a Counter

» a Counter (note the capital C) is a dictionary specialized for
frequency counting

from collections import Counter

1SU "
2

document = ["this", a", "collection", "of",
Uwordsﬂ’ "and"’ "it", "is

Ufromu, uau, Htextﬂ]

", "extracted",

almost like before

freqs = Counter()

for word in document:
freqs[word] += 1

to get the most frequent:
print (freqs.most_common (3))

UNIVERSITY OF
GOTHENBURG

using a Counter (even simpler)

from collections import Counter
document = ["this", "i "a", "collection", "of",

lsll
llwordsll s llandll s llitll s

is" s

"extracted",
llfromll s llall , lltextll]

freqs = Counter(document)

E unwersiTy oF
S8 GOTHENBURG

example: counting the part-of-speech tags for each word

The DT
last JJ
thing NN
they PRP
needed VBD
was VBD

another DT
drag-down JJ

blow NN
) b
That DT
measure NN
could MD
compel VB

C unveRsITY OF
S8 GOTHENBURG

example: counting the part-of-speech tags for each word
(code)

from collections import defaultdict, Counter
stats = defaultdict(Counter)
with open(’tagged_corpus.txt’) as f:
for 1 in f:
word, tag = l.split()
stats[word] [tag] += 1

print(stats[’measure’])

E unwersiTy oF
S8 GOTHENBURG

overview

introduction to the theory of algorithms

UNIVERSITY OF
GOTHENBURG

complexity of algorithms

UNIVERSITY OF
GOTHENBURG

apart from being correct, we prefer that our program

» does its job in reasonable time

» doesn't fill the whole memory of the machine
in general, the time and the memory consumption of an
algorithm depend on the size of the input

we will have a look at the time complexity: the relation
between input size and time

» conversely, there is a notion of memory complexity

we'll start by comparing a few different sorting algorithms

the “idiot sort algorithm”

1. are the elements sorted yet?

2. if not, shuffle the elements randomly and check again

UNIVERSITY OF
GOTHENBURG

measuring the time of the idiot sort algorithm

0.25

0.20}

0.15F

0.101

0.05f

0.00
1

UNIVERSITY OF
GOTHENBURG

the selection sort algorithm

1. put the lowest element at the first position
2. put the second lowest element at the second position
3. ...

UNIVERSITY OF
GOTHENBURG

the quicksort algorithm

» if the list is empty or has just one element, we're done
> else

1. select a pivot element p

2. quicksort the sublist L of elements less than p

3. quicksort the sublist G of elements greater than p
4. arrange the elements in the order L, p, G

UNIVERSITY OF
GOTHENBURG

execution time of selection sort (blue) and quicksort (green)

0.0012

0.0010}

0.0008

0.0006

0.0004}

0.0002-

0.0000
0

UNIVERSITY OF
GOTHENBURG

notation for time complexity

» we use the ordo notation for time complexity

» for instance, locating an element in a list (if x in 1st) of
length N has a time complexity of O(N)

» this means that the relation between time and the size N is
something like

time = something - N + something

where something is a constant number that depends on your
machine, the programming language, etc

» we can distinguish average-case and worst-case complexity

UNIVERSITY OF
GOTHENBURG

some common terminology

» an algorithm with a time complexity of O(N) is said to run in
linear time

» O(1): constant time

» O(N?): quadratic time

» O(N3): cubic time

» O(log N): logarithmic time

» O(exp N): exponential time

C unveRsITY OF
S8 GOTHENBURG

reasoning about time complexity

» when determining the time complexity, we try to reason about
how many steps the algorithm will take, depending on the
input size N

> in general

» a single loop over the whole input gives O(N)
> (assuming each step takes constant time!)
» a loop inside a loop gives O(N) - O(N) = O(N?)
> or equivalently, calling an O(N) function inside a loop

» but one loop after another gives O(N) + O(N) = O(N)

UNIVERSITY OF
GOTHENBURG

examples

» what is the time complexity of the function max in Python?

UNIVERSITY OF
GOTHENBURG

examples

» what is the time complexity of the function max in Python?

> it just goes through all the elements once, so linear (O(N))
» (assuming that we don't use any complicated key function)

UNIVERSITY OF
GOTHENBURG

examples

» what is the time complexity of the function max in Python?

> it just goes through all the elements once, so linear (O(N))
» (assuming that we don't use any complicated key function)

» what is the time complexity of selection sort?

UNIVERSITY OF
GOTHENBURG

examples

» what is the time complexity of the function max in Python?

> it just goes through all the elements once, so linear (O(N))
» (assuming that we don't use any complicated key function)

» what is the time complexity of selection sort?
» it has a loop inside a loop, so quadratic (O(N?))

UNIVERSITY OF
GOTHENBURG

data structures

UNIVERSITY OF
GOTHENBURG

we use data structures to store the data that our program
processes
» lists, sets, dictionaries, ...
the selection of a data structure is a tradeoff
» list: we remember order; fast access; quite fast to add elements
at the end but slow elsewhere; slow to test membership
» set: we don't remember order; fast to add elements; fast to
test membership
» dictionary: key—value mapping; we don’t remember insertion
order; fast lookup by key; slow lookup by value
in some cases, we may need to develop our own data
structures
» see last part of this lecture

time complexity of our common data structures

> see https://wiki.python.org/moin/TimeComplexity

>

v

>

E unwersiTy oF
S8 GOTHENBURG

list:

>

vV vy

accessing an item (1st[i]) takes constant time

append takes constant time (practically)

insert/delete take linear time (especially near beginning)
membership test (if x in 1st) takes linear time

dictionary:

vV vy vVvYy

set:
>
»

lookup (d[key]) takes constant time (practically)

insertion (d[key] = value) takes constant time (practically)
key membership test takes constant time (practically)

value membership test takes linear time

add takes constant time (practically)
membership test takes constant time (practically)

sorting in Python has a time complexity of O(N - log V)

https://wiki.python.org/moin/TimeComplexity

example: counting the number of unique elements in a list

def count_unique(lst):
seen_before = []
for x in lst:
if x not in seen_before:
seen_before.append (x)
return len(seen_before)

C unveRsITY OF
S8 GOTHENBURG

counting unique elements

0.00035 T T T

0.00030F-

0.00025f-

0.00020F-

0.00015f

0.00010

0.00005f-

0.00000
0

UNIVERSITY OF
GOTHENBURG

memory complexity, briefly

» we want to count the number of tokens in a corpus
» two implementations:

1. load the corpus into memory, count all the tokens
2. read the corpus line by line, add the number of tokens on each
line to a counter

» which implementation is most efficient in terms of memory?

UNIVERSITY OF
GOTHENBURG

memory complexity, briefly

» we want to count the number of tokens in a corpus
» two implementations:

1. load the corpus into memory, count all the tokens
2. read the corpus line by line, add the number of tokens on each
line to a counter

» which implementation is most efficient in terms of memory?

1. memory complexity linear in the corpus size
2. memory complexity linear in the maximum line length

UNIVERSITY OF
GOTHENBURG

overview

more object-oriented programming

UNIVERSITY OF
GOTHENBURG

recap: declaring a class

The name of the class .
% The name of its superclass

class MyClassName (object):

ini self, i :
Constructor def __init_ (, inputs)

definition (do something)

def some_method(self, inputs):

Method /

definitions (do something)

\ def some_other_method(self, inputs):

return something

UNIVERSITY OF
GOTHENBURG

example: phrase structure trees

» a phrase structure tree is a
tree commonly used to represent
syntactic structure

> it consists of phrases and words

» a phrase consists of a phrase
label (e.g. NP, VP, ...) and a
list of children (words or other
phrases)

UNIVERSITY OF
GOTHENBURG

(o) (Lve)

John

hit the ball

example: phrase structure trees

wl = Word("John")

w2 = Word("hit") g.
w3 = Word("the") NP:
w4 = Word("ball") John
VP:
pl = Phrase("NP", [wi]) hit
p2 = Phrase("NP", [w3, w4]) NP:
p3 = Phrase("VP", [w2, p2]) the
p4 = Phrase("S", [p1l, p3]) ball
p4.printout () 3

print (w4.depth())

UNIVERSITY OF
GOTHENBURG

phrase structure trees: the code

class Word(object):
def __init__(self, word):
self.word = word
self.parent = None

def printout(self, ind):
print(" "*ind + self.word)

def depth(self):
if not self.parent:
return 0
else:

class Phrase(object):

def

def

return 1 + self.parent.depth()

UNIVERSITY OF
GOTHENBURG

def

__init__(self, label, children):
self.parent = None
for ¢ in children:

c.parent = self
self.children = children
self.label = label

printout(self, ind = 0):

print(" "*ind + self.label+":")

for ¢ in self.children:
c.printout(ind + 4)

depth(self):
if not self.parent:
return 0
else:
return 1 + self.parent.depth()

inheritance

> we can say that two classes share some methods by declaring
them as derived from a common more general superclass

» some methods are shared between the classes, others are not
> this is how we write;

class SomeSubClass(SomeSuperClass) :

» we say that the subclass inherits methods from the superclass

UNIVERSITY OF
GOTHENBURG

example of design with inheritance
> a hierarchy of inheritance can be quite deep:
class Person(object):
clas;.étudent(Person):
clasé.feacher(Person):

class Undergrad(Student):

» note: if isinstance(x, Undergrad), then we also have
isinstance(x, Person) and isinstance(x, Student)

A\

|Student| |Teacher| |Administrator| |TechSupport|

|Undergrad| |PhDStudent|

UNIVERSITY OF
GOTHENBURG

example of design with inheritance

class Person(object):
def __init__(self, name, pnr):

class Student(Person):

def register_at_course(self, course):

class PhDStudent(Student):

def add_publication(self, article):

UNIVERSITY OF
GOTHENBURG

phrase structure trees with

class Node(object):
def depth(self):
if not self.parent:
return 0
else:
return 1 + self.parent.depth()

def

class Word(Node):
def __init__(self, word):
self .word = word
self.parent = None

def

def printout(self, ind):

print(" "*ind + self.word)

UNIVERSITY OF
GOTHENBURG

inheritance

class Phrase(Node):

__init__(self, label, children):
self.parent = None
for ¢ in children:

c.parent = self
self.children = children
self.label = label

printout(self, ind = 0):

print(" "*ind + self.label+":")

for ¢ in self.children:
c.printout(ind + 4)

overview

making your own data structures

UNIVERSITY OF
GOTHENBURG

developing our own data structures: a linked list

» a linked list is a data structure consisting of a chain of links,
where each link contains a piece of data

» advantages compared to a normal Python list: easy and fast to
insert, especially at the start of the list

» disadvantages: complicated and slow to get the n-th item

class LinkedList(object):

the_list = LinkedList()
the_list.add_first("a string")
the_list.add_first("another string")
print(the_list.get_first())

the_list

\—)I;I—__)I;'_’Nﬂne

"another string" "a string"

UNIVERSITY OF
GOTHENBURG

linked list implementation

class Link(object):
def __init__(self, data, next):
self.data = data
self .next = next

class LinkedList(object):
def __init__(self):
self.first = None
def add_first(self, data):
self.first = Link(data, self.first)
def get_first(self):
if self.first:
return self.first.data
def remove_first(self, data):
if self.first:
self.first = self.first.next

the_list = LinkedList()
the_list.add_first("a string")
the_list.add_first("another string")
print(the_list.get_first())

UNIVERSITY OF
GOTHENBURG

iterators and iterables

> an iterator is an object that has a method called __next__
» __next__ will generate a new item each time it is called

» an iterable is an object that has a method called __iter__
that will return an iterator
» if an object is iterable, then we can use it in a for

» all data structures such as lists, sets, dictionaries are iterable
» if we are going through a list, the iterator will remember the
position where we are currently looking

for x in some_iterable:
do something with x ...

UNIVERSITY OF
GOTHENBURG

example

class NumberGenerator(object):

def __init__(self):
self.current = 0

def __next__(self):
self.current += 1
if self.current > 10:

raise Stoplteration

return self.current

class NumberSequence(object):
def __iter__(self):
return NumberGenerator()

numbers = NumberSequence ()
for n in numbers:
print(n)

UNIVERSITY OF
GOTHENBURG

making the linked list iterable

class Link(object):

def __init__(self, data, next): the_list = LinkedList()
self.data = data
self.next = next the_list.add_first("testl")
the_list.add_first("test2")
class LinkedListIterator(object): the_list.add_first("test3")
def __init__(self, start):
self.current = start for x in the_list:
def __next__(self): print(x)
if not self.current:
raise StopIteration print(list(the_list))
else:

out = self.current.data
self.current = self.current.next
return out

class LinkedList(object):
def __init__(self):
self.first = None

def __iter__(self):
return LinkedListIterator(self.first)
B wmny

developing our own data structures: letter tree (trie)

» dictionaries are efficient for storing words, but
sometimes we need to do more complex things:

» finding all words starting with h, or
alphabetically between abc and abx

» finding the words most similar to the
misspelled word hering

» finding anagrams

>

> a trie is a data structure for strings where all
strings sharing a prefix are represented as a tree
node

UNIVERSITY OF
GOTHENBURG

trie methods

> to test whether a string s is stored in the trie
subtree:
» if s is empty, then return True if the node is
an end node (yellow), False otherwise
» otherwise, if we have a subtree for the first
letter £ of s
> check if the rest of s is contained in the
subtree
> otherwise, return False
> to insert a string s into a trie subtree:
» if s is empty, set the current node as an end
node (yellow)
» otherwise, make sure that there is a subtree for
the first letter £ of s
» ...then insert the rest of s into that subtree

UNIVERSITY OF
GOTHENBURG

implementing the trie

class TrieNode(object):
def __init__(self):

self.children = {}
self.end = False

class Trie(object):
def __init__(self):
self.root = TrieNode()

def insert(self, s):

def insert(self, s, position): ;
self.root.insert(s, 0)

if position == len(s):
self.end = True .
. def contains(self, s):
else:

letter = s[position] return self.root.contains(s,0)

if not self.children.has_key(letter):
child = TrieNode()

self.children[letter] = child t = Trie()
self.children[letter].insert(s, position+1) .
t.insert("hello")
3 " n
def contains(self, s, position): t.?nsert(he—mén)

; itdiom == . t.insert("herring")

if position == len(s): X .
t.insert("horrible")

return self.end

letter = s[position]

if not self.children.has_key(letter):
return False

return self.children[letter].contains(s, position+1)

UNIVERSITY OF
GOTHENBURG

print(t.contains("herring"))
print(t.contains("hell"))

	introduction to the theory of algorithms
	more object-oriented programming
	making your own data structures

