Machine learning in NLP
Additional information about Assignment 3

\nﬂl} UNIVERSITY OF GOTHENBURG

Sprak

BANKEN

Richard Johansson

October 16, 2014

assignment 3: overview

» implement the perceptron algorithm for structured objects

» use this to build a dependency parser and a named entity
tagger

UNIVERSITY OF GOTHENBURG

refresher: typical use of scikit-learn classifiers (training)

v

get the training data (e.g. read it from a file)

» we then have a list of inputs and another list of corresponding
outputs

» extract features from each input object
» e.g. a dict with attributes and their values
» convert the features to vectors using one of the vectorizers

» vec.fit(X) to create the feature—dimension mapping
» Xe = vec.transform(X) to convert the training set
» (fit_transform carries out both steps)

» initialize the classifier object
» train the classifier
» call classifier.fit(Xe, Y)
» (optional: wrap the vectorizer and the classifier into a
Pipeline)

NIVERSITY OF GOTHENBURG

refresher: typical use of scikit-learn classifiers (new data)

> read the data

» extract features from each input object

» convert the features to vectors using the previous vectorizer
» again Xe = transform(X)

» for each input, predict the output using the classifier

» guess = classifier.predict(x)

» output or evaluate the result

UNIVERSITY OF GOTHENBURG

so how does this relate to parsing and tagging?

» when you build the parser or tagger in this assignment, the
code will have a quite similar structure

> ...but the scikit-learn components are replaced with
specialized components

» e.g. a ParseVectorizer tailored for sentences/parses, as
opposed to the general-purpose DictVectorizer

» we now consider the parser

NIVERSITY OF GOTHENBURG

training the parser

v

read the training treebank
» use the function read_dependency_treebank
» we then have a list of inputs (sentences) and another list of
corresponding outputs (parse trees)

v

convert the sentences to vectors using the ParseVectorizer
» vec.fit(X, Y) to create the feature—dimension mapping
» Xe, Ye = vec.transform(X, Y) to convert the training set
» this step includes feature extraction

v

initialize the “classifier” (the parse predictor)

» we give it a problem definition object that contains
parsing-specific functionality

v

train the parse predictor
» call parser.fit(Xe, Ye)

NIVERSITY OF GOTHENBURG

after reading the training set

<D> Lisa walks home

<D> Put it in the car

{8%)) UNIVERSITY OF GOTHENBURG

Sprak:

BANKEN

the actual Python objects

X Y

[[(><TOP>’, °<TOP>’), (’Lisa’, ’NNP’), [[-1,2,0,21,
(’walks’, ’VBZ’), (’home’, ’RB’)],
[(><TOP>’, °<TOP>’), (’Put’, ’VB’), [-1,0,1,1,5, 311
(’it’, ’PRP’), (’in’, ’IN’),
(’the’, °DT’), (’car’, °NN’)] 1]

Sprak:

UNIVERSITY OF GOTHENBURG EA NKEN

what happens in transform in the ParseVectorizer?

<D>
¥ . N\
<D> Lisa walks home mmjp- Llsa walks home

EEQ

Sprak

UNIVERSITY OF GOTHENBURG BA N KEN

pseudocode for training the perceptron

w=(0,...,0)
repeat NV times
for (x,y)in T
g =argmax, w - f(x,y’) < find the highest-scoring tree
if g is not equal to y
w=w+ f(x,y) — f(x,g) < add the features for the
good tree and subtract
those for the bad tree
return w

» the two highlighted parts are specific to the problem we're
considering, in this case parsing

» this is why we wrap them into a “problem definition” object

> now, let’s look at the implementation of those two method3
UNIVERSITY OF GOTHENBURG

the methods in the problem definition

» predict: if we have a weight vector w, find the
highest-scoring parse tree for the sentence x

» get_features: find the feature vector f(x,y) for a sentence
x and a tree y

UNIVERSITY OF GOTHENBURG

predict in MSTParsingDefinition

<D>

argmax w *flx, y)

X Lisa walks home

[E=esieaa RN u n et anana]

mPp Lisa walks home » \ a2
20 ¢

¢

e
<>@EE
)
¥

Sprak

UNIVERSITY OF GOTHENBURG B AN KEN

get_features in MSTParsingDefinition

-

X Llsa walks home
\ e fix,y)

D:J:J:J:J:J:J:J:DD:J:J:J:J:J:JID

<D>

y |
M

o

o

y
/\\/_\\

Sprak

UNIVERSITY OF GOTHENBURG B. A NKEN

a technical note on the feature vectors

fixy)

Py PR

» see the code or McDonald's paper for a description of what
features we're using
» the features are stored in sparse vectors

» for practical reasons, get_features returns a sparse matrix,
that is a “list” of vectors

» use the helper function add_sparse_rows_to_dense to add
all edge vectors to w

NIVERSITY OF GOTHENBURG

running the parser on new data

> read the testing treebank

> convert the sentences to vectors using your previous
ParseVectorizer
» Xe, Ye = vec.transform(X, Y) to convert the training set
» for each input, predict the output using the parser you trained
previously
> guess = parser.predict(x)
> output or evaluate the result
> in this assignment: compute the attachment accuracy

NIVERSITY OF GOTHENBURG

attachment evaluation: example

gold-standard trees predicted trees
[rf-1,2,0, 21, [r-1, 2,0, 21,
[-1,0,1,1,5,31]1 [-1,0,1,2,5,31]
attachment accuracy — number of correct attachments

number of tokens

» remember not to count the dummy root token!

UNIVERSITY OF GOTHENBURG

oo|~

