
Machine learning in NLP
Additional information about Assignment 3

Richard Johansson

October 16, 2014

-20pt

assignment 3: overview

I implement the perceptron algorithm for structured objects

I use this to build a dependency parser and a named entity

tagger

-20pt

refresher: typical use of scikit-learn classi�ers (training)

I get the training data (e.g. read it from a �le)
I we then have a list of inputs and another list of corresponding

outputs

I extract features from each input object
I e.g. a dict with attributes and their values

I convert the features to vectors using one of the vectorizers
I vec.fit(X) to create the feature→dimension mapping
I Xe = vec.transform(X) to convert the training set
I (fit_transform carries out both steps)

I initialize the classi�er object

I train the classi�er
I call classifier.fit(Xe, Y)

I (optional: wrap the vectorizer and the classi�er into a

Pipeline)

-20pt

refresher: typical use of scikit-learn classi�ers (new data)

I read the data

I extract features from each input object

I convert the features to vectors using the previous vectorizer
I again Xe = transform(X)

I for each input, predict the output using the classi�er
I guess = classifier.predict(x)

I output or evaluate the result

-20pt

so how does this relate to parsing and tagging?

I when you build the parser or tagger in this assignment, the

code will have a quite similar structure

I . . . but the scikit-learn components are replaced with
specialized components

I e.g. a ParseVectorizer tailored for sentences/parses, as
opposed to the general-purpose DictVectorizer

I we now consider the parser

-20pt

training the parser

I read the training treebank
I use the function read_dependency_treebank
I we then have a list of inputs (sentences) and another list of

corresponding outputs (parse trees)

I convert the sentences to vectors using the ParseVectorizer

I vec.fit(X, Y) to create the feature→dimension mapping
I Xe, Ye = vec.transform(X, Y) to convert the training set
I this step includes feature extraction

I initialize the �classi�er� (the parse predictor)
I we give it a problem de�nition object that contains

parsing-speci�c functionality

I train the parse predictor
I call parser.fit(Xe, Ye)

-20pt

after reading the training set

walks home<D> Lisa

<D> Put it thein car

X Y

-20pt

the actual Python objects

X

[[('<TOP>', '<TOP>'), ('Lisa', 'NNP'),

('walks', 'VBZ'), ('home', 'RB')],

[('<TOP>', '<TOP>'), ('Put', 'VB'),

('it', 'PRP'), ('in', 'IN'),

('the', 'DT'), ('car', 'NN')]]

Y

[[-1, 2, 0, 2],

[-1, 0, 1, 1, 5, 3]]

-20pt

what happens in transform in the ParseVectorizer?

Lisa walks home

<D>

walks home<D> Lisa

-20pt

pseudocode for training the perceptron

w = (0, . . . , 0)
repeat N times

for (x , y) in T
g = argmaxy ′ w · f (x , y ′) ← �nd the highest-scoring tree

if g is not equal to y

w = w + f (x , y)− f (x , g) ← add the features for the

good tree and subtract

those for the bad tree

return w

I the two highlighted parts are speci�c to the problem we're

considering, in this case parsing

I this is why we wrap them into a �problem de�nition� object

I now, let's look at the implementation of those two methods

-20pt

the methods in the problem de�nition

I predict: if we have a weight vector w , �nd the

highest-scoring parse tree for the sentence x

I get_features: �nd the feature vector f (x , y) for a sentence

x and a tree y

-20pt

predict in MSTParsingDefinition

Lisa walks home

<D>

argmax
y

w * f(x, y)

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

x

w

-20pt

get_features in MSTParsingDefinition

Lisa walks home

<D>

f(x, y)

y

x

-20pt

a technical note on the feature vectors

f(x, y)

I see the code or McDonald's paper for a description of what

features we're using

I the features are stored in sparse vectors

I for practical reasons, get_features returns a sparse matrix,
that is a �list� of vectors

I use the helper function add_sparse_rows_to_dense to add
all edge vectors to w

-20pt

running the parser on new data

I read the testing treebank

I convert the sentences to vectors using your previous
ParseVectorizer

I Xe, Ye = vec.transform(X, Y) to convert the training set

I for each input, predict the output using the parser you trained
previously

I guess = parser.predict(x)

I output or evaluate the result
I in this assignment: compute the attachment accuracy

-20pt

attachment evaluation: example

gold-standard trees

[[-1, 2, 0, 2],

[-1, 0, 1, 1, 5, 3]]

predicted trees

[[-1, 2, 0, 2],

[-1, 0, 1, 2, 5, 3]]

attachment accuracy = number of correct attachments
number of tokens

= 7

8

I remember not to count the dummy root token!

