Machine learning in NLP
Lecture 6: Predicting structured objects

Richard Johansson

September 22, 2012
This lecture

- Instead of simple labels such as text categories, we’ll predict complex objects such as sequences, trees, or translations.
- We’ll stick to the same basic framework:
 \[\text{guess} = \arg \max_{y \in \mathcal{Y}} w \cdot f(x, y) \]
- The “same” learning algorithms can be used.
- The critical things: \(f(x, y) \) and \(\arg \max \)
 - Features
 - Searching
Again: some preliminaries

- **Inputs**, \(x \in \mathcal{X} \): the things that we want to classify
 - e.g. \(x \) is a document, a word in context, an image, a query, ...
- **Outputs**, \(y \in \mathcal{Y} \): the categories to which the \(x \)'s are classified
 - e.g. \(y \) is sentiment or topic label for a document, a word sense tag for a word in context, ...

- Previously: \(\mathcal{Y} \) is a small set e.g. \{ positive, negative \} or \{ line.1, \ldots, line.6 \}
- This lecture: \(\mathcal{Y} \) is a very large set e.g. the set of possible parse trees of a sentence, or the set of translations of a sentence
- Supervised learning: the training set consists of input–output pairs: \(\mathcal{T} = \{(x_1, y_1), \ldots, (x_T, y_T)\} \)
 - so in this lecture, the \(x_i \) are e.g. sentences and the \(y_i \) are e.g. parse trees
Predicting structured objects

- In many NLP tasks, the output is not just a class
- For a given input x, the set of legal outputs
 - is very large – typically exponential in the size of x
 - depends on x
 - consists of many small but interdependent parts
Example: POS tag sequences

Will plays golf

NNP VBZ NN
NNP VBZ VB
NNP NNS NN
NNP NNS VB
NN VBZ NN
NN VBZ VB
NN NNS NN
NN NNS VB
MD VBZ NN
MD VBZ VB
MD NNS NN
MD NNS VB
Example: dependency parse trees

\[s = \langle D \rangle \text{ Lisa walks home} \]

\[\begin{align*}
 t^1 &= \\
 t^2 &= \\
 t^3 &= \\
 t^4 &= \\
 t^5 &= \\
 t^6 &= \\
 t^7 &=
\end{align*} \]
Example: translations

Kas sul kõht on tühi?

Is the stomach empty on you?
Do you have an empty stomach?
Are you starved?
...

recap: multiclass classification

- In the previous lecture, we discussed two basic ideas for training multiclass classifiers:
 - Break down the complex problem into simpler problems, train a classifier for each.
 - Make a more advanced model that tries to handle the complex problem directly.

- We can apply the same ideas when predicting complex objects.
- We start with the second idea and return to the first in the end.
the feature function $f(x, y)$ creates a feature vector that represents the instance x and its class y

\[
\begin{bmatrix}
\text{SBJ} \\
\text{ADV} \\
\text{(empty)} \\
\text{TMP}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 1 & \ldots
\end{bmatrix}
\]

then a one-vs-rest classifier can be written like this:

$$\text{guess} = \arg \max_{y \in \mathcal{Y}} w \cdot f(x, y)$$
recap: multiclass perceptron

\[w = (0, \ldots, 0) \]

repeat \(N \) times

\begin{itemize}
\item for \((x_i, y_i)\) in \(T \)
 \[g = \arg \max_y \mathbf{w} \cdot f(x_i, y) \]
 \item if \(g \) is not equal to \(y_i \)
 \[w = w + f(x_i, y_i) - f(x_i, g) \]
\end{itemize}

return \(w \)
Adapting our algorithms

- The idea: adapt the algorithms we have seen:
 - Perceptron
 - SVM
 - Logistic regression
- Our algorithms still produce a w
- But how to implement in practice?
when training a perceptron, we make predictions and update the weights when our predictions are wrong

how do we carry out the arg max line if there are 1,000,000 possible outputs?

\[w = (0, \ldots, 0) \]

repeat \(N \) times

for \((x_i, y_i)\) in \(T \)

\[g = \text{arg max}_y w \cdot f(x_i, y) \]

\[w = w + f(x_i, y_i) - f(x_i, g) \]

return \(w \)
In logistic regression, we estimate \mathbf{w} by maximizing a likelihood:

$$w^* = \arg \max \ w \ L(\mathbf{w}) = \arg \max \ w \ P(y_1 | x_1) \cdot \ldots \cdot P(y_T | x_T)$$

where

$$P(y_k | x) = \frac{e^{score_{y_k}}}{e^{score_{y_1}} + \ldots + e^{score_{y_n}}} = \frac{e^{w \cdot f(x, y_k)}}{e^{w \cdot f(x, y_1)} + \ldots + e^{w \cdot f(x, y_n)}}$$

We don’t want to sum over all possible outputs!
Prediction of complex objects

- The solution: break down the object into simple parts
 - There's an “infinite” set of outputs, but a finite set of parts
 - ~ 50 possible POS tags, ~ 2500 POS bigrams
 - $(n + 1) \cdot n$ possible dependency links in a sentence of length n
- Apply a feature function to the parts independently
- Use some problem-specific method to find the best selection of parts, i.e. solving $\arg \max_{y \in Y} w \cdot f(x_i, y)$
 - Sequence tagging: the Viterbi algorithm
 - Dependency parsing: maximum spanning tree algorithms
- (Jargon: the decomposition into parts is called a factorization)
Applying the scoring function

\[y = (y^1, \ldots, y^k) \]

\[\mathbf{w} \cdot f(x, y) = \sum_{y^k} \mathbf{w} \cdot f_{part}(x, y^k) \]
Case study: sequence tagging

When we predict a tag, such as the POS tag for golf, our decision depends on the previous tags.

To make this problem solvable, we introduce a practical assumption: that it depends on the previous tag only.

This is called the Markov assumption.

Our parts are tag bigrams:

\[w \cdot f(x, y) = \sum_{y^k} w \cdot f_{part}(x, y^k) \]

\[w \cdot f([, Will, plays, golf, <E>], [, NNP, VBZ, NN, <E>]) = \]
\[= w \cdot f_{part}(x, [, NNP]) + \ldots + w \cdot f_{part}(x, [NN, <E>]) \]
More sequence tagging

\[
\begin{array}{cccccc}
& Prices & fell & in & New & York & . & <E> \\
C & NC & NC & C & C & & . & <E> \\
O & O & O & O & B-LOC & I-LOC & O & <E> \\
\end{array}
\]

- The feature function \(f_{part} \) can use the previous tag and any information from the input
In dependency parsing, we may use the dependency edges as the parts:

\[w \cdot f(x, y) = \sum_{y^k} w \cdot f_{part}(x, y^k) = \]
\[= w \cdot f_{part}(x, <D> \rightarrow \text{walks}) + \]
\[+ w \cdot f_{part}(x, \text{walks} \rightarrow \text{Lisa}) + \]
\[+ w \cdot f_{part}(x, \text{walks} \rightarrow \text{home}) \]

See McDonald, Crammer and Pereira, *Online Large-Margin Training of Dependency Parsers*, ACL 2005.
Dependency parsing features

Lisa walks home

- head = “walks”
- dependent = “Lisa”
- head POS = “VBZ”
- dependent POS = “NNP”
- head+dependent POS pair = “VBZ+NNP”
- ...
- See McDonald, Crammer and Pereira, *Online Large-Margin Training of Dependency Parsers*, ACL 2005.
Finding the best sequence of tags

We can visualize the search space as a graph
The scores in the graph are given by $w \cdot f_{part}(x, \text{bigram})$
Best tag sequence: the path from start to end that gives the highest sum
Use the Viterbi algorithm
Note the difference between Viterbi and greedy search
Finding the best tree

The scores in the graph are given by $w \cdot f_{part}(x, \text{edge})$.

Our task: find the set of edges that
 - gives the highest sum of edge scores
 - includes all words
 - contains no cycles

This is called the maximum spanning tree.
Finding the best tree

The Chu–Liu/Edmonds algorithm:
1. For each node, find the top-scoring incoming edge
2. If there are no cycles, we are done
3. If there is a cycle, create a single node containing the cycle
4. Find the MST in the new graph (recursion)
5. Break the cycle...

Also: the Eisner algorithm (see McDonald paper)
The perceptron pseudocode looks exactly the same when we are predicting complex outputs!

Of course, the arg max is implemented differently...

The perceptron learning algorithm:

\[w = (0, \ldots, 0) \]

\[
\text{repeat } N \text{ times} \\
\quad \text{for } (x_i, y_i) \text{ in } T \\
\quad \quad g = \arg \max_y w \cdot f(x_i, y) \\
\quad w = w + f(x_i, y_i) - f(x_i, g) \\
\text{return } w
\]

At prediction time: \[\text{guess} = \arg \max_{y \in Y} w \cdot f(x, y) \]
Loosely coupled software design

- The perceptron makes it easy to separate the problem-specific parts and the learning part

- more about this in the third assignment
What about logistic regression?

\[w^* = \arg \max_w L(w) = \arg \max_w P(y_1|x_1) \cdot \ldots \cdot P(y_T|x_T) \]

where

\[P(y_k|x) = \frac{e^{\text{score}_{y_k}}}{e^{\text{score}_{y_1}} + \ldots + e^{\text{score}_{y_n}}} = \frac{e^{w \cdot f(x,y_k)}}{e^{w \cdot f(x,y_1)} + \ldots + e^{w \cdot f(x,y_n)}} \]

We rewrite a bit:

\[\log L(w) = \sum_t w \cdot f(x_t, y_t) - Z \]

The term \(Z \) is called the \textit{partition function} and is big and ugly:

\[Z = \sum_t \log \sum_i e^{w \cdot f(x_t, y_{ti})} \]
Conditional random fields

$$\log L(w) = \sum_{t} w \cdot f(x_t, y_t) - Z$$

$$Z = \sum_{t} \log \sum_{i} e^{w \cdot f(x_t, y_{ti})}$$

- LR for structured objects is called **conditional random fields** (CRFs)
- Implementation is more messy than for perceptrons: in addition to the maximization method, you must also compute Z and its derivative
- When computing Z, use the decomposition into parts
- At test time: as usual $\arg\max_{y \in Y} w \cdot f(x, y)$
Sequence tagging with CRFs

For sequence tagging with the Markov assumption, Z can be computed efficiently.

CRF is probably the most popular learning method for this task.

Many implementations:
- Mallet – a Java library that can be called from NLTK
- CRF++
- CRF-suite
- CRF-SGD – the fastest

what about SVMs?

- similar ideas can be used to adapt the SVM
- multiclass Pegasos can be applied without change
- ...and their software at http://svmlight.joachims.org/svm_struct.html
Using more complex parts

- Sometimes our parts are too restricted
- We may define more complex parts:
 - In tagging, let f_{part} use tag **trigrams**: NNP-VBZ-NN
 - In dependency parsing, let f_{part} use mini-trees larger than single links:

```
believes in ghosts
```

- If we make f_{part} more complex, we also make the search more complex!
Search spaces...
some Python libraries

- **PyStruct**: https://pystruct.github.io
 - contains a number of learning algorithms as well as optimization tools to help implementing the arg max
 - designed to be compatible with scikit-learn
 - unfortunately, can’t yet handle sparse feature vectors...

- **seqlearn**: http://larsmans.github.io/seqlearn
 - implemented by one of the designers of scikit-learn
 - only sequence tagging
again: two basic approaches

- how to predict a complex object?
 - break down the complex problem into simpler problems, train a classifier for each
 - make a more advanced model that tries to handle the complex problem directly
- we have now discussed the second of them
- how about the first?
use a greedy method: apply a classifier at each step

Pros:
- Easier to implement
- Faster
- No restriction on features

Cons:
- Less accurate (sometimes)

can we do something similar for a dependency parser?

recall the Nivre parser from the StatNLP course

this parser works in a left-to-right fashion

at each step, we make a decision by using a classifier

this parser is much faster than graph-searching parsers:

- Nivre (greedy left-to-right): linear time
- McDonald (graph search): quadratic or cubic time
Sammanställning parsrar

<table>
<thead>
<tr>
<th>parser</th>
<th>korrekthet</th>
<th>länkkorrekthet</th>
<th>tid/mening</th>
<th>kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTH</td>
<td>82.43</td>
<td>88.58</td>
<td>0.193</td>
<td>2-ordning, pseudoprojektiv, Brown-kluster</td>
</tr>
<tr>
<td>Mate-tools</td>
<td>81.65</td>
<td>87.93</td>
<td>0.141</td>
<td>ickeprojektiv, Brown-kluster</td>
</tr>
<tr>
<td>TurboParser</td>
<td>79.91</td>
<td>87.31</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>ZPar</td>
<td>80.78</td>
<td>87.26</td>
<td>0.190</td>
<td>projektiv</td>
</tr>
<tr>
<td>MSTParser</td>
<td>78.14</td>
<td>86.32</td>
<td>0.119</td>
<td>2-ordning, ickeprojektiv</td>
</tr>
<tr>
<td>MaltParser</td>
<td>78.42</td>
<td>85.17</td>
<td>0.005</td>
<td>ickeprojektiv, Brown-kluster, tränad enligt instruktioner av Johan Hall</td>
</tr>
<tr>
<td>Huang</td>
<td>-</td>
<td>84.74</td>
<td>0.017</td>
<td>projektiv, inga funktioner</td>
</tr>
</tbody>
</table>
Greedy search may be too imprecise

A compromise between greedy and exact search: beam search

At each step, remember the k best analyses

Has been used to improve the performance of Nivre-like dependency parsers:

Reranking

- Another compromise between greedy and exact: reranking
- First, use a “simple” system:
 - PCFG or edge-factored parser
 - Word-based machine translator
- Let the simple system generate the k top-scoring analyses
- In a second step, rerank the set: use a more careful scoring function
- The reranker can use almost any feature
Reranking example

<\textbf{D}> Put the bag on the table

<\textbf{D}> Put the bag on the table
We have seen how to apply classification methods when the things we want to predict are complex.

The general idea is similar:

\[
\text{guess} = \arg \max_{\mathbf{w} \cdot \mathbf{f}(x, y)}
\]

We have adapted the learning algorithms: perceptron, LR → CRF.

The critical things: \(f(x, y) \) and \(\arg \max \)

- Features: the feature function operates on the parts
- Searching
 - Search space complexity depends on the parts
 - Tailored search procedure for our problem: Viterbi, MST, ...
- Cheating: greedy, beam, reranking
assignment 3

- implement the structured perceptron learning algorithm
- use it to train a dependency parser

... and a named entity recognizer

United Nations official Ekeus heads for Baghdad.

[ORG] [PER] [LOC]

- instructions will be up in a few days; you can prepare by reading McDonald’s paper
recap: modularization

- in the assignment, the problem-specific parts (left box) will be provided
 - the Eisner algorithm for dependency parsing
 - the Viterbi algorithm for tagging
 - (and code for reading data, etc.)

- you implement the rest!