
Machine learning in NLP

Lecture 6: Predicting structured objects

Richard Johansson

September 22, 2012

This lecture

I Instead of simple labels such as text categories, we'll predict
complex objects such as sequences, trees, or translations

I We'll stick to the same basic framework

guess = argmax
y∈Y

w · f (x , y)

I The �same� learning algorithms can be used

I The critical things: f (x , y) and argmax
I Features
I Searching

Again: some preliminaries

I Inputs, x ∈ X : the things that we want to classify
I e.g. x is a document, a word in context, an image, a query, . . .

I Outputs, y ∈ Y: the categories to which the x :s are classi�ed
I e.g. y is sentiment or topic label for a document, a word sense

tag for a word in context, . . .

I Previously: Y is a small set e.g. { positive, negative } or
{ line.1, . . . , line.6 }

I This lecture: Y is a very large set e.g. the set of possible parse
trees of a sentence, or the set of translations of a sentence

I Supervised learning: the training set consists of input�output
pairs: T = {(x1, y1), . . . , (xT , yT)}

I so in this lecture, the xi are e.g. sentences and the yi are e.g.
parse trees

Predicting structured objects

I In many NLP tasks, the output is not just a class

I For a given input x , the set of legal outputs
I is very large � typically exponential in the size of x
I depends on x
I consists of many small but interdependent parts

Example: POS tag sequences

NNP VBZ NN
NNP VBZ VB
NNP NNS NN
NNP NNS VB
NN VBZ NN

Will plays golf NN VBZ VB
NN NNS NN
NN NNS VB
MD VBZ NN
MD VBZ VB
MD NNS NN
MD NNS VB

Example: dependency parse trees

t1 =

<D> Lisa walks =s home

t =

t =

t =

t =

t =

t =

2

3

4

5

6

7

Example: translations

Is the stomach empty on you?
Kas sul kõht on tühi? Do you have an empty stomach?

Are you starved?
. . .

recap: multiclass classi�cation

I in the previous lecture, we discussed two basic ideas for
training multiclass classi�ers

I break down the complex problem into simpler problems, train a
classi�er for each

I make a more advanced model that tries to handle the complex
problem directly

I we can apply the same ideas when predicting complex objects

I we start with the second idea and return to the �rst in the end

recap: multiclass linear classi�ers

I the feature function f (x , y) creates a feature vector the
represent the instance x and its class y

I then a one-vs-rest classi�er can be written like this:

guess = argmax
y∈Y

w · f (x , y)

recap: multiclass perceptron

w = (0, . . . , 0)
repeat N times
for (xi , yi) in T
g = argmaxy w · f (xi , y)
if g is not equal to yi
w = w + f (xi , yi)− f (xi , g)

return w

Adapting our algorithms

I The idea: adapt the algorithms we have seen:
I Perceptron
I SVM
I Logistic regression

I Our algorithms still produce a w

I But how to implement in practice?

Perceptron

I when training a perceptron, we make predictions and update
the weights when our predictions are wrong

I how do we carry out the argmax line if there are 1,000,000
possible outputs?

w = (0, . . . , 0)
repeat N times
for (xi , yi) in T
g = argmaxy w · f (xi , y)
w = w + f (xi , yi)− f (xi , g)

return w

Logistic regression

In logistic regression, we estimate w by maxizing a likelihood:

w
∗ = argmax

w
L(w) = argmax

w
P(y1|x1) · . . . · P(yT |xT)

where

P(yk |x) =
escoreyk

escorey1 + . . .+ escoreyn
=

ew ·f (x ,yk)

ew ·f (x ,y1) + . . .+ ew ·f (x ,yn)

We don't want to sum over all possible outputs!

Prediction of complex objects

I The solution: break down the object into simple parts
I There's an �in�nite� set of outputs, but a �nite set of parts
I ∼ 50 possible POS tags, ∼ 2500 POS bigrams
I (n + 1) · n possible dependency links in a sentence of length n

I Apply a feature function to the parts independently

I Use some problem-speci�c method to �nd the best selection
of parts, i.e. solving argmaxy∈Y w · f (xi , y)

I Sequence tagging: the Viterbi algorithm
I Dependency parsing: maximum spanning tree algorithms

I (Jargon: the decomposition into parts is called a
factorization)

Applying the scoring function

y = (y1, . . . , yk)

w · f (x , y) =
∑
yk

w · f part(x , yk)

Case study: sequence tagging

 Will plays golf <E>
 NNP VBZ NN <E>

↑

I When we predict a tag, such as the POS tag for golf, our
decision depends on the previous tags

I To make this problem solvable, we introduce a practical
assumption: that it depends on the previous tag only

I This is called the Markov assumption

I Our parts are tag bigrams:

w · f (x , y) =
∑
yk

w · f part(x , yk)

w · f ([,Will,plays,golf,<E>], [,NNP,VBZ,NN,<E>]) =
= w · f part(x , [,NNP]) + . . .+w · f part(x , [NN,<E>])

More sequence tagging

 Prices fell in New York . <E>
 C NC NC C C . <E>

 O O O B-LOC I-LOC O <E>
↑

I The feature function f part can use the previous tag and any
information from the input

I See Collins, Discriminative Training Methods for Hidden

Markov Models: Theory and Experiments with Perceptron

Algorithms, EMNLP 2002.

Case study: dependency parsing

<D> Lisa walks home

I In dependency parsing, we may use the dependency edges as
the parts:

w · f (x , y) =
∑

yk w · f part(x , yk) =

= w · f part(x ,<D>→walks)+
+w · f part(x ,walks→Lisa)+
+w · f part(x ,walks→home)

I See McDonald, Crammer and Pereira, Online Large-Margin

Training of Dependency Parsers, ACL 2005.

Dependency parsing features

<D> Lisa walks home

I head = �walks�

I dependent = �Lisa�

I head POS = �VBZ�

I dependent POS = �NNP�

I head+dependent POS pair = �VBZ+NNP�

I . . .

I See McDonald, Crammer and Pereira, Online Large-Margin

Training of Dependency Parsers, ACL 2005.

Finding the best sequence of tags

 MD

NNP

NN

VBZ NN

VB

<E>

1

2

−1

1

2

1

2

2

4

0

1

−1

2−1

NNS

0

I We can visualize the search space as a graph

I The scores in the graph are given by w · f part(x , bigram)

I Best tag sequence: the path from start to end that gives the
highest sum

I Use the Viterbi algorithm

I Note the di�erence between Viterbi and greedy search

Finding the best tree

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

I The scores in the graph are given by w · f part(x , edge)
I Our task: �nd the set of edges that

I gives the highest sum of edge scores
I includes all words
I contains no cycles

I This is called the maximum spanning tree

Finding the best tree

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

I The Chu�Liu/Edmonds algorithm:

1. For each node, �nd the top-scoring incoming edge
2. If there are no cycles, we are done
3. If there is a cycle, create a single node containing the cycle
4. Find the MST in the new graph (recursion)
5. Break the cycle...

I Also: the Eisner algorithm (see McDonald paper)

Perceptron

I The perceptron pseudocode looks exactly the same when we
are predicting complex outputs!

I Of course, the argmax is implemented di�erently. . .

The perceptron learning algorithm:

w = (0, . . . , 0)
repeat N times
for (xi , yi) in T
g = argmaxy w · f (xi , y)
w = w + f (xi , yi)− f (xi , g)

return w

At prediction time: guess = argmaxy∈Y w · f (x , y)

Loosely coupled software design

I The perceptron makes it easy to separate the problem-speci�c
parts and the learning part

Maximization

Problem−specific

Feature extract

Prediction

Learning

w

I more about this in the third assignment

What about logistic regression?

w
∗ = argmax

w
L(w) = argmax

w
P(y1|x1) · . . . · P(yT |xT)

where

P(yk |x) =
escoreyk

escorey1 + . . .+ escoreyn
=

ew ·f (x ,yk)

ew ·f (x ,y1) + . . .+ ew ·f (x ,yn)

We rewrite a bit:

log L(w) =
∑
t

w · f (xt , yt)− Z

The term Z is called the partition function and is big and ugly:

Z =
∑
t

log
∑
i

ew ·f (xt ,yti)

Conditional random �elds

log L(w) =
∑
t

w · f (xt , yt)− Z

Z =
∑
t

log
∑
i

ew ·f (xt ,yti)

I LR for structured objects is called conditional random �elds
(CRFs)

I Implementation is more messy than for perceptrons: in
addition to the maximization method, you must also compute
Z and its derivative

I When computing Z , use the decomposition into parts

I At test time: as usual argmaxy∈Y w · f (x , y)

Sequence tagging with CRFs

 Prices fell in New York . <E>
 C NC NC C C . <E>

 O O O B-LOC I-LOC O <E>
↑

I For sequence tagging with the Markov assumption, Z can be
computed e�ciently

I CRF is probably the most popular learning method for this task

I Many implementations:
I Mallet � a Java library that can be called from NLTK
I CRF++
I CRF-suite
I CRF-SGD � the fastest

I La�erty, McCallum, Pereira: Conditional random �elds:

Probabilistic models for segmenting and labeling sequence

data. ICML 2001.

what about SVMs?

I similar ideas can be used to adapt the SVM

I multiclass Pegasos can be applied without change

I see also the paper by Tsochantaridis, Joachims, Hofmann, and
Altun, Large Margin Methods for Structured and

Interdependent Output Variables. JMLR, 2005.

I . . . and their software at
http://svmlight.joachims.org/svm_struct.html

http://svmlight.joachims.org/svm_struct.html

Using more complex parts

I Sometimes our parts are too restricted

I We may de�ne more complex parts:
I In tagging, let f part use tag trigrams: NNP-VBZ-NN
I In dependency parsing, let f part use mini-trees larger than

single links:

believes in ghosts

I If we make f part more complex, we also make the search
more complex!

Search spaces...

 MD

NNP

NN

VBZ NN

VB

<E>

1

2

−1

1

2

1

2

2

4

0

1

−1

2−1

NNS

0

/

NN/NNS

NN/VBZ

MD/VBZ

MD/NNS

NNP/NNS

NNP/VBZ
/NNP

/MD

/NN

VBZ/NN

VBZ/VB

NNS/VB

NNS/NN

NN/<E>

VB/<E>

<E>/<E>

some Python libraries

I PyStruct: https://pystruct.github.io
I contains a number of learning algorithms as well as

optimization tools to help implementing the argmax
I designed to be compatible with scikit-learn
I unfortunately, can't yet handle sparse feature vectors. . .

I seqlearn: http://larsmans.github.io/seqlearn
I implemented by one of the designers of scikit-learn
I only sequence tagging

https://pystruct.github.io
http://larsmans.github.io/seqlearn

again: two basic approaches

I how to predict a complex object?
I break down the complex problem into simpler problems, train a

classi�er for each
I make a more advanced model that tries to handle the complex

problem directly

I we have now discussed the second of them

I how about the �rst?

Greedy search

I use a greedy method: apply a classi�er at each step

 MD

NNP

NN

VBZ NN

VB

<E>

1

2

−1

1

2

1

2

2

4

0

1

−1

2−1

NNS

0

I Pros:
I Easier to implement
I Faster
I No restriction on features

I Cons:
I Less accurate (sometimes)

I Ratinov and Roth: Design challenges and misconceptions in

named entity recognition. CoNLL 2009.

I Liang, Daumé III and Klein: Structure compilation: trading

structure for features. ICML 2008.

parsing by classi�cation

I can we do something similar for a dependency parser?

I recall the Nivre parser from the StatNLP course

I this parser works in a left-to-right fashion

I at each step, we make a decision by using a classi�er

I this parser is much faster than graph-searching parsers:
I Nivre (greedy left-to-right): linear time
I McDonald (graph search): quadratic or cubic time

example: parser comparison

Beam search

 MD

NNP

NN

VBZ NN

VB

<E>

1

2

−1

1

2

1

2

2

4

0

1

−1

2−1

NNS

0

I Greedy search may be too imprecise

I A compromise between greedy and exact search: beam search

I At each step, remember the k best analyses

I Has been used to improve the performance of Nivre-like
dependency parsers:

I Johansson and Nugues: Investigating multilingual dependency

parsing, CoNLL 2006.
I Zhang and Nivre: Transition-based dependency parsing with

rich non-local features, NAACL 2011.

Reranking

I Another compromise between greedy and exact: reranking

I First, use a �simple� system:
I PCFG or edge-factored parser
I Word-based machine translator

I Let the simple system generate the k top-scoring analyses

I In a second step, rerank the set: use a more careful scoring
function

I The reranker can use almost any feature

I Charniak and Johnson: Coarse-to-�ne n-best parsing and

MaxEnt discriminative reranking. ACL 2005.

Reranking example

<D> Put the bag the table on

<D> Put the bag the table on

Summary

I We have seen how to apply classi�cation methods when the
things we want to predict are complex

I The general idea is similar:

guess = argmax
y∈Y

w · f (x , y)

I We have adapted the learning algorithms: perceptron,
LR→CRF

I The critical things: f (x , y) and argmax
I Features: the feature function operates on the parts
I Searching

I Search space complexity depends on the parts
I Tailored search procedure for our problem: Viterbi, MST, . . .
I Cheating: greedy, beam, reranking

assignment 3

I implement the structured perceptron learning algorithm

I use it to train a dependency parser

I . . . and a named entity recognizer

United Nations o�cial Ekeus heads for Baghdad.
[ORG] [PER] [LOC]

I instructions will be up in a few days; you can prepare by
reading McDonald's paper

recap: modularization

I in the assignment, the problem-speci�c parts (left box) will be
provided

I the Eisner algorithm for dependency parsing
I the Viterbi algorithm for tagging
I (and code for reading data, etc.)

Maximization

Problem−specific

Feature extract

Prediction

Learning

w

I you implement the rest!

