Machine learning in NLP
The averaged perceptron

Richard Johansson

September 29, 2014
your project

- please select a project within the next couple of weeks
- see web page for ideas
today

- a simple modification of the perceptron algorithm
- often gives quite nice improvements in practice
- implementing it is an optional task in assignment 3
multiclass/structured perceptron pseudocode

\[\mathbf{w} = (0, \ldots, 0) \]

repeat \(N \) times
 for \((x_i, y_i)\) in \(\mathcal{T} \)
 \[g = \text{arg max}_y \mathbf{w} \cdot f(x_i, y) \]
 if \(g \) is not equal to \(y_i \)
 \[\mathbf{w} = \mathbf{w} + f(x_i, y_i) - f(x_i, g) \]

return \(\mathbf{w} \)
a problem with the perceptron?

- we return the most recent version of the weight vector
- intuitively, this version is over-adapted to the last few instances, and may work less well for other instances
intuition: combining classifiers by voting or averaging

- let’s assume we have a lot of classifiers
- each of them has its own strengths and weaknesses
- could they somehow work together?
 - **voting**: return the output favored by most of the classifiers
 - **averaging**: compute the prediction scores for all classifiers; return the output selected by considering the average of all the scores
using averaging to handle the overfitting problem

- in the perceptron, each version of the weight vector can be seen as a separate classifier
 - so we have $N \cdot |\mathcal{T}|$ classifiers
- each of them is over-adapted to the last examples it saw
- but if we compute their average, then maybe we get something that works better overall?
- **averaged perceptron**: return the average of all versions of the weight vector
averaged perceptron pseudocode (naive)

\[w_0 = (0, \ldots, 0) \]
\[t = 0 \]
repeat \(N \) times
 for \((x_i, y_i)\) in \(\mathcal{T} \)
 \[g = \arg \max_y w_t \cdot f(x_i, y) \]
 if \(g \) is not equal to \(y_i \)
 \[w_{t+1} = w_t + f(x_i, y_i) - f(x_i, g) \]
 else
 \[w_{t+1} = w_t \]
 \[t = t + 1 \]
return \[\frac{w_1 + \ldots + w_N \cdot |\mathcal{T}|}{N \cdot |\mathcal{T}|} \]
this is too impractical!

▶ it’s a waste of memory to remember all the versions of \(w \) that we have used during training
▶ can we do something smarter?
an observation

► the weight vector \mathbf{w}_3 is the sum of all updates so far:

$$
\mathbf{w}_0 = (0, \ldots, 0)
$$

$$
\mathbf{w}_1 = \mathbf{w}_0 + \Delta_1 = \Delta_1
$$

$$
\mathbf{w}_2 = \mathbf{w}_1 + \Delta_2 = \Delta_1 + \Delta_2
$$

$$
\mathbf{w}_3 = \mathbf{w}_2 + \Delta_3 = \Delta_1 + \Delta_2 + \Delta_3
$$

► the average of three vectors can be written:

$$
\frac{\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3}{3} = \frac{\Delta_1}{3} + \frac{\Delta_1 + \Delta_2}{3} + \frac{\Delta_1 + \Delta_2 + \Delta_3}{3}
$$

$$
= \frac{3}{3} \Delta_1 + \frac{2}{3} \Delta_2 + \frac{1}{3} \Delta_3
$$
better averaged perceptron

\[w = (0, \ldots, 0) \]
\[a = (0, \ldots, 0) \]
\[\text{step} = N \cdot |T| \]
repeat \(N \) times
 for \((x_i, y_i)\) in \(T \)
 \[g = \arg \max_y w \cdot f(x_i, y) \]
 if \(g \) is not equal to \(y_i \)
 \[w = w + f(x_i, y_i) - f(x_i, g) \]
 \[a = a + \text{step} \cdot \frac{f(x_i, y_i) - f(x_i, g)}{N \cdot |T|} \]
 \[\text{step} = \text{step} - 1 \]
return \(a \)