Semi-supervised learning and domain adaptation

Barbara Plank CST, University of Copenhagen

Guest lecture, University of Gothenburg October 23, 2015

Outline

- Semi-supervised learning
 - What is SSL?
- BREAK
- Domain adaptation
 - different ways to tackle DA

What you have seen so far...

sentiment analysis	tweet	label	
tagging	sentence	sequence	
parsing	sentence	موسد کی آمد کر بعد اور مربع مربع مربع مربع مربع مربع مربع مرب	

 \mathbf{X}

supervised learning

labeled data

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^l$$

- nearest neighbor
- perceptron
- Naive Bayes
- structured perceptron
- MST parsing
- neural networks

What if there is no y?

X ?

unsupervised learning

semi-supervised learning

labeled data unlabeled data

What is semi-supervised learning (SSL?)

• labeled data (e.g. Named Entity Recognition, NER)

... says John Brown/PER, vice president of ABC ltd/ORG

Sweeeats/ORG corp in Philadephia/LOC

• Lots more unlabeled data

unlabeled

data

Can we build a better model by exploiting unlabeled data?

Carney accused of wading into politics with EU speech Reuters UK - 42 minutes ago

LONDON Britain's central bank governor's upbeat assessment of the European Union's membership is regrettable, a prominent campaigner for a British exit said on Thursday, accusing Mark Carney of overstepping the mark and venturing into politics.

Vauxhall considers Zafira recall as firm investigates scores of cars bursting ...

Telegraph.co.uk - 1 hour ago

Thousands of Vauxhall Zafiras could be recalled as the firm investigates reports that more than 130 have spontaneously exploded. The motor company is contemplating a recall of models made between 2005 and 2014 as it seeks to find the "root cause" of ...

Anti-SSL arguments

- "We'll find the time and money to annotate more labeled data"
- Hmm, but:
 - Annotating PT WSJ took a decade!
 - What about building a NER for, say, Irish? Who is going to annotate it for me?

Pro-SSL arguments

- I have a good idea, but I can't afford to label data
- I have some annotated data, but I have even more unlabeled data
- I have labeled data from one domain, but I want to build a model for another domain: domain adaptation
- **Cognitive Science motivation:** Also humans do semi-supervised learning (children learning by parent pointing to animal and saying "dog", but also by just observing environment)

What is SSL? More formally

- Learning from both labeled and unlabeled data:
 - *l* labeled instances $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and
 - *u* unlabeled instances $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, usually u >> l
- Goal: better classifier than from labeled data alone

How can unlabeled data ever help?

Zhu et al., (2007)

Bootstrapping methods

A widely used SSL bootstrapping algorithm: self-training

• Procedure:

1. Initially, let
$$L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$$
 and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.

2. Repeat:

- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training

- Procedure:
 - 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
 - 2. Repeat:
 - 3. Train f from L using supervised learning.
 - 4. Apply f to the unlabeled instances in U.
 - 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.
- Parameters, e.g., iterations, pool/growth size, select
- Questions:

Q1: This is called a wrapper method. Why?Q2: Why might this help to build a better system?Q3: What might go wrong?

Self-training: Summary

Q1: Wrapper?	choice of f left open
Q2: Works when?	broad margin, expected low error
Q3: Limitations?	errors get reinforced
Variants?	Yes, many, e.g., delible self-training, weigh instances,

Self-training for Parsing

Parser type Seed size Iterations Improved?

Charniak (1997)	Generative	Large	Single	No
McClosky et al. (2006)	Gen.+Disc.	Large	Single	Yes
Steedman et al. (2003	Generative	Small	Multiple	No
Reichart and	Generative	Small	Single	Yes
Rappoport (2007)				

(large = ~40k sentences, small = <1k sentences)

Summary of self-training for parsing experiments

What if gap between data is large? different *domains*?

Off-the-shelf POS tagger

The/DT share/NN rose/VBD to/TO 10/CD \$/\$ a/DT unit/NN ./.

May/NNP I/PRP brrow/VBP 10bucks/UH

Why does it fail?

Machine Learning (ML)

BREAK

Outline

- Semi-supervised learning
- BREAK
- Domain adaptation
 - different ways to tackle sample selection bias

Amazon reviews

★★★★★ very good indeed for its size

By pcp0827 on July 3, 2014

Format: Paperback

A thin, but excellent, guide to the beautiful region of Gothenburg and the western archipelago. A small number of excellent recommendations of hotels and restaurants.

★★★★☆ Great essential for the baker in your life....you!

By Aussiebabe on May 20, 2005 Color: Onyx Black

I love the mixer's power, capacity and ease of use. It makes even garlic mashed potatoes heavenly. I selected a black model to match my Viking kitchens without realizing the color would need more frequent cleaning. If you use this mixer every day buy a cover or another color to save time.

Sample Selection Bias

Generalization!

The ability of a learning machine to perform accurately on new, unseen examples

Possible approaches

1. add more **X**

- 2. modify **X** (make more similar to target)
- 3. modify **Y** (we'll not touch upon that here)

First, a few words on terminology...

what do we call what?

Domain Adaptation: 4 Setups labeled labeled 1. supervised DA SOURCE TARGET (e.g. Daumè, 2007) labeled unlabeled semi-supervised DA labeled SOURCE TARGET (c., Daumè, 2010; TARGET before Chang, Conner & Koth, 2010) 2010 (Plank, 2011) labeled 3. unsupervised DA unlabeled SOURCE TARGET (e.g. Blitzer et al., 2007; McClosky et al., 2008) ?? UNKNOWN : 2012 4. blind/unknown DA labeled onwa<mark>rds</mark> (e.g. Søgaard & Johannsen, 2012; Plank & SOURCE Moschitti, 2013; Elming et al., 2014) at test time

We'll focus on unsupervised DA

semi-supervised machine learning

to address the biased selection of sentences (\mathbf{x})

Semi-supervised learning (SSL)

How can it help us to bridge the cross-domain gulf?

Self-training

Self-training

Pros

- ✓ Simple wrapper method
- ✓ Can correct bias to some extent (if expected error on target is low/gulf not too wide)

Cons

- many parameters
- might introduce more bias (both selection and label bias)

Self-training alone often does not work, needs some additional 'signal'

e.g. Parsing: use of reranker on top Tagging: use of dictionaries, hyperlinks...

Other SSL approaches

• Co-training

- similar to self-training but with *two views* (two classifiers labeling data for each other
 - ✓ often less sensitive to mistakes
 - computationally more expensive (ensemble)
- Tri-training
 - add data if two classifiers agree on label

What has this to do with generalization?

What about modifying X?

Implicit use of unlabeled data

(e.g., Turian et al., 2010; Mikolov et al., 2013; Baroni et al., 2014)

Example: Brown clusters

consumers		76394
employers		119946
residents		126880
citizen	21543	
photographer		22341
legend	24429	
priest	24698	
farmer	25568	
lawyer	25588	
journalist		26313
filmmaker		3919

< <p>I > · ·

Add features to X

- add features learned from unlabeled data
- Hypothesis: additional features will help to bridge the gap between source and target
- shared feature representation is the idea behind structural correspondence learning (SCL)

blue: source green: target black: in both domains

Add features to X

Possible approaches

- 1. More X:
 - a. Use <u>semi-supervised learning</u> (selftraining, co-training, tri-training)
- 2. Modify X:
 - a. Add features: embeddings, clusters

Importance weighting

Importance weighting (IW)

SOURCE train

assign instance-dependent weights (Shimodaira, 2001):

unlabeled TARGET

TARGET test

approximation, e.g.:

domain classifier to discriminate between SOURCE & TARGET

(Zadrozny et al., 2004; Bickel and Scheffer, 2007; Søgaard and Haulrich, 2011)

Importance weighting (IW)

Pros

- \checkmark simple idea
- \checkmark works well if we know how our sample differs
- ✓ also useful to combat label bias (more on this later)

Cons

- challenge is to find a good weight function
- finite sample: can overcome bias only to certain extent

Importance weighting in NLP

Only 4 NLP studies¹, of which 2 on unsupervised DA with mixed results

Does importance weighting work for unsupervised DA of POS taggers?

¹(Jiang & Zhai, 2007; Foster et al., 2010; Søgaard & Haulrich, 2011; Plank & Moschitti, 2013)

We tried many ways (different ways to get weights), but..

(Plank, Johannsen, Søgaard, 2014) EMNLP

Importance weighting for POS

(500 runs in each plot)

Possible approaches

- 1. More X:
 - a. Use <u>semi-supervised learning</u> (selftraining, co-training, tri-training)
- 2. Modify X:
 - a. Add features: embeddings, clusters
 - b. Use only some
 - a. instances: importance weighting
 - b. features: dropout

Dropout

Feature swamping

Motivation:

Figure 1: The CMU Navlab Autonomous Navigation Testbed

(ALVINN)

Problem: feature swamping (Sutton et al. 2006) **Idea:** corrupt features

Data Corruption

Dropout

Algorithm 1 Averaged perceptron with drop-out

- 1: **input:** dataset \mathcal{D} of size $M \times N$, number of rounds *R*, distribution *P*, drop-out rate $\delta = 0.1$ 2: initialize t = 0, $w^t = 0$ **C** vector indicating how "active" feature is
- 3: **for** r = 1 **to** *R* **do**
- for (x^i, y^i) in \mathcal{D} do 4:
- draw active: $\xi = P(1 \delta, M)$ 5:
- predict: $\hat{y} \leftarrow \arg \max_{y' \in \mathcal{Y}} w^t \cdot \xi[f(x^i, y')]$ 6:
- update the model: $w^{t+1} \leftarrow w^t + \xi[f(x^i, y^i) f(x^i, \hat{y})]$ 7:
- t = t + 18:
- end for 9:
- 10: end for
- 11: **output:** the averaged model $\hat{w} \leftarrow \frac{1}{t} \sum_{i=1}^{t} w^i$
 - **binomial dropout** (Søgaard & Johannsen, 2012): sample P from random binomial ("hard dropout", 0/1)
 - Antagonistic adversaries (Søgaard, 2013a): drop features "where it hurts most" (those that get weight more than standard deviation away from mean)

Another view on dropout

Ensemble methods (e.g., NetFlix challenge)

dropout

~ model averaging ~ regularization

(Hinton et al., 2012; Wager, Wang & Liang, 2013)

What has dropout to do with generalization?

Possible approaches

- 1. More X:
 - a. Use <u>semi-supervised learning</u> (selftraining, co-training, tri-training)
- 2. Modify X:
 - a. Add features: embeddings, clusters
 - b. Drop (weight) instances: importance weighting
 - c. **Drop** features: dropout
- 3. (Use additional knowledge to guide learner): distant supervision

distant supervision

Distant supervision

- Distantly supervised: use a large knowledge base (KB) to create noisily labeled instances
 Freebase^{*}
- **Idea:** if *entity1* and *entity2* are found in the same sentence and *rel(entity1,entity2)* ∈ KB → positive training instance
- Exploiting some kind of "world knowledge"
- Like **type-constraints** in sequence tagging

(Täckström et al., 2013)

Take-home message

	Good?	Bad?
Semi-supervised learning	Neighboring domains. Or with <i>distant</i> supervision.	When the CROSS- DOMAIN GULF is wide.
Importance-weighting	? (in generative models)	In discriminative POS tagging, for example.
Dropout	When your training data is highly redundant, e.g. In parsing, for ex text classification.	
Distant supervision	When your KBs are good.	For low-resource languages.

Additional

Baselines (for supervised DA)

Making input/training data more similar to each other

Questions?

Thanks!