
Clarification of the pseudocode in the Pegasos paper
Richard Johansson

1 Introduction

In this document, I will clarify some details about the Pegasos algorithm (Shalev-Shwartz et
al., 2011) for training a linear SVM. The pseudocode of the Pegasos algorithm itself is given in
Algorithm 1. This corresponds to Figure 1 in the Pegasos paper, except that the notation has
been changed for clarification.

Algorithm 1 The Pegasos algorithm.

Inputs: a list of example feature vectors X
a list of outputs Y
regularization parameter λ
the number of steps T

w = (0, . . . ,0)
for t in [1, . . . , T]

select a position i randomly
η = 1

λ·t
score = yi · (w · xi)
if score < 1

w = (1− η · λ) ·w + (η · yi) · xi
else

w = (1− η · λ) ·w
the end result is w

Here are some clarifications of the details:

• I have left out the optional projection step (the line in square brackets in the paper).

• Following scikit-learn conventions, I’m using X and Y to denote the training examples
and their corresponding outputs, instead of the S used in the paper.

• In the notation, I distinguish vectors (w, xi) from numbers (for instance yi, λ, η) by
writing the vector names in a bold font.

• In the paper, several of the variables have an index t, for instance the weight vector wt.
That is, there is a separate “version” of the weight vector for each step in the algorithm.
This is just a conventional notation and doesn’t matter in practice, so I’ve removed the
index t from the variables in the pseudocode here.

• As usual, the outputs (in the list Y) are coded as +1 for positive examples and -1 for
negative examples.

• We pick a random position i in the training set. If the training set contains |Y| examples,
then i is a random number in the set {0, . . . , |Y| − 1}. In Python, we can draw such a
number using random.randint.

• xi is the feature vector at position i in X, and yi the output (+1 or -1) at position i in Y.

• The number η (Greek letter eta) is the step length in gradient descent.

• As we have discussed previously, the multiplication dot (·) is used ambiguously. Be
careful so that you understand the meaning of each of the dots in the pseudocode.

• The regularization parameter λ (Greek letter lambda) is not related to the keyword lambda

in Python (which we use for anonymous functions). However, it’s an unfortunate choice
of parameter name, since the Python keyword lambda prevents us from using that word
as a variable name.

2 Derivation of the algorithm in the pseudocode

In this section, I explain how we get to the pseudocode from the mathematical formulation of
the SVM. As we discussed in the lecture, and as stated in Equation 1 in the paper, in the SVM
the weight vector w is defined as the vector that minimizes the following objective function:

f (w, X,Y) =
λ

2
· ‖w‖2 +

1
|Y| ·∑i

Loss(w, xi,yi)

For the SVM, Loss is the hinge loss function:

Loss(w, xi,yi) = max(0,1− yi · (w · xi))

The hinge loss function can be written more explicitly in this way:

Loss(w, xi,yi) =

{
1− yi · (w · xi) if yi · (w · xi) < 1
0 otherwise

What Pegasos does is to apply an optimization algorithm to find the w that minimizes the
objective function f . As we saw in the lecture, gradient descent can be used to minimize
a function. For efficiency reasons, we use a simplified version of this algorithm, stochastic
gradient descent (SGD), where we consider just a single example at a time. The pseudocode of
the general SGD is shown in Algorithm 2.

Algorithm 2 Stochastic gradient descent with a fixed number of steps.

Inputs: a list of example feature vectors X
a list of corresponding outputs Y
the number of steps T

w = (0, . . . ,0)
for t in [1, . . . , T]

select a position i randomly
determine a step length η
compute the gradient ∇(w) of the objective function f (w, xi,yi)
w = w− η · ∇(w)

the end result is w

As we saw in the lecture on optimization, gradient descent algorithm have some problems
finding the minimum if the step length η is not set properly. To avoid this difficulty, Pegasos
uses a variable step length:

η =
1

λ · t
Since we compute the step length by dividing by t, it will gradually become smaller and
smaller. The purpose of this is to avoid the problems we saw in the lecture, where we “jump
around” the optimum.

The final missing piece is the gradient ∇. Since we’re considering just one single example,
we compute the gradient with respect to just xi and yi. We won’t go into the details about
how to compute the gradient, but it can be shown that it is:

∇(w) =

{
−yi · xi if yi · (w · xi) < 1
(0, . . . ,0) otherwise

Strictly speaking, ∇ is not a gradient, but a subgradient: this is because of the “abrupt” shape
of the hinge loss function.

3 Changing to logistic regression

While the SVM is based on the hinge loss, the logistic regression model instead uses a different
loss function called the log loss:

Loss(w, xi,yi) = log(1 + exp(−yi · (w · xi)))

In the table on page 15 in the paper, we can see the gradient of the log loss. (This is actually
a real gradient and not just a subgradient, since the log loss has a smooth shape unlike the
hinge loss.)

∇(w) = − yi

1 + exp(yi · (w · xi))
· xi

If you want to use this in your code, please just note the following small details:

• The minus sign will be turned into a plus when you plug the gradient into the SGD
algorithm, because it is canceled by the minus in the update step.

• When you code the gradient in Python, the function math.exp can give an overflow error
if its input is too large. We can work around this problem if we note that the gradient
becomes practically zero if the input to exp is large (say, 500 or more).

• On the other hand, we don’t need the two separate cases we had for the hinge loss.

4 Speeding up the vector scaling operation

If you changed your code to use sparse vectors instead of dense vectors, you probably saw a
speed improvement if you’re using the full feature set. However, there is still one part that
can be made more efficient. At each step of the algorithm, we shrink the weight vector a bit.

w = (1− η · λ) ·w

If we are using many features and w is high-dimensional, this will be a bit slow because we
need to go through all dimensions, and we need to do this for all the T steps! Section 2.4 in
the paper describes (a bit tersely) a little trick that we can use to reduce the computation time.

The idea is that we define a scaling factor a that we use to aggregate all the scaling operations
that we carry out: instead of rescaling the whole vector w, we just change a. We initialize a to
1, and then we replace the vector scaling step above with the following:

a = (1− η · λ) · a

We then need to change the other steps a bit, so that we take the scaling factor a into account.
First, we change the dot product between the weight vector and the feature vector:

score = (a · yi) · (w · xi)

Then, we change the step where we add the feature vector to the weight vector, we need to
“compensate” for the fact that we eventually will scale w by a:

w = w +
η · yi

a
· xi

Finally, when the algorithm is finishing, we carry out the scaling operation that we have
postponed:

w = a ·w

References
Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pegasos: Primal

estimated sub-gradient solver for SVM. Mathematical Programming, Series B, 127(1):3–30.

