
Machine Learning for NLP
Lecture 3: Linear classi�ers

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 10, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

this lecture

I classi�ers in vector spaces: linear classi�ers
I perceptron
I support vector machines
I logistic regression
I . . .

I implementation in NumPy/SciPy

I introduction to the second assignment

-20pt

UNIVERSITY OF

GOTHENBURG

overview

linear classi�ers

case study: the perceptron

training linear classi�ers with optimization

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

recap: basic vector operations

the basic operations on vectors:

I scaling: α · v = α · (v1, . . . , vn) = (α · v1, . . . , α · vn)
I addition and subtraction:
v +w = (v1, . . . , vn) + (w1, . . . ,wn) = (v1 + w1, . . . , vn + wn)

I scalar product or dot product:
v ·w = (v1, . . . , vn) · (w1, . . . ,wn) = v1 · w1 + . . .+ vn · wn

I vector length or norm:
|v | = |(v1, . . . , vn)| =

√
v1 · v1 + . . .+ vn · vn =

√
v · v

-20pt

UNIVERSITY OF

GOTHENBURG

linear classi�ers

I a linear classi�er is a classi�er that is de�ned in terms of a
scoring function like this

score = w · x

I explanation of the parts:
I x is a vector with features of what we want to classify (e.g.

made with a DictVectorizer)
I w is a vector representing which features the classi�er thinks

are important
I · is the dot product between the two vectors

I for now, we'll assume that there are two classes: binary
classi�cation

I return the �rst class if the score > 0
I . . . otherwise the second class

I the essential idea: features are scored independently

-20pt

UNIVERSITY OF

GOTHENBURG

example

�a really good movie�

-20pt

UNIVERSITY OF

GOTHENBURG

geometric view

I geometrically, a linear classi�er can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

-20pt

UNIVERSITY OF

GOTHENBURG

training linear classi�ers

I the family of learning algorithms that create linear classi�ers is
quite large

I perceptron, Naive Bayes, support vector machine, logistic
regression/MaxEnt, . . .

I their underlying theoretical motivations can di�er a lot but in
the end they all return a weight vector w

-20pt

UNIVERSITY OF

GOTHENBURG

a linear classi�er in NumPy/scikit-learn

class LinearClassifier(BaseEstimator, ClassifierMixin):

def predict(self, x):

score = x.dot(self.w)

if score >= 0.0:

return self.positive_class

else:

return self.negative_class

-20pt

UNIVERSITY OF

GOTHENBURG

better: handle all instances at the same time

class LinearClassifier(BaseEstimator, ClassifierMixin):

def predict(self, X):

scores = X.dot(self.w)

out = numpy.select([scores>=0.0, scores<0.0], [self.positive_class,

self.negative_class])

return out

-20pt

UNIVERSITY OF

GOTHENBURG

an illustration of the steps

>>> import numpy

>>> scores = numpy.array([-1, 2, 3, -4, 5])

>>> scores >= 0

array([False, True, True, False, True], dtype=bool)

>>> scores < 0

array([True, False, False, True, False], dtype=bool)

>>> numpy.select([scores >= 0, scores < 0], ["positive", "negative"])

array(['negative', 'positive', 'positive', 'negative', 'positive'],

dtype='|S8')

-20pt

UNIVERSITY OF

GOTHENBURG

linear separability

I a dataset is linearly separable if there exists a w that gives
us perfect classi�cation

I theorem: if the dataset is linearly separable, then the
perceptron learning algorithm will �nd a separating w in a
�nite number of steps

-20pt

UNIVERSITY OF

GOTHENBURG

a simple example of linear inseparability

very good Positive
very bad Negative
not good Negative
not bad Positive

-20pt

UNIVERSITY OF

GOTHENBURG

a historical note

I the perceptron was invented in 1957 by
Frank Rosenblatt

I here's an image (from Wikipedia) of the
�rst implementation

I initially, a lot of hype!

I the realization of its limitations led to a
backlash against machine learning in general

I the nail in the co�n was the publication in
1969 of the book Perceptrons by Minsky
and Papert

I new hype in the 1980s, and now. . .

-20pt

UNIVERSITY OF

GOTHENBURG

mapping into a larger vector space

I we may add �useful combinations� of features to make the
dataset separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
not bad not-bad Positive

I from a geometrical viewpoint: we are creating a feature space
with a higher dimensionality:

I lots of features → LOTS of combinations

-20pt

UNIVERSITY OF

GOTHENBURG

overview

linear classi�ers

case study: the perceptron

training linear classi�ers with optimization

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

recap: our simple perceptron implementation

I start with an empty weight table

I go through examples, classify according to the current weights

I each time we misclassify, change the weight table a bit
I if a positive instance was misclassi�ed, add 1 to the weight of

each feature in the document
I and conversely . . .

def perceptron_learn(examples, number_iterations):

weights = {}

for iteration in range(number_iterations):

for label, features in examples:

guess = perceptron_classify(features, weights)

if label == "pos" and guess == "neg":

for f in features:

weights[f] = weights.get(f, 0) + 1

elif label == "neg" and guess == "pos":

for f in features:

weights[f] = weights.get(f, 0) - 1

return weights

-20pt

UNIVERSITY OF

GOTHENBURG

recap: our simple perceptron implementation

I start with an empty weight table

I go through examples, classify according to the current weights

I each time we misclassify, change the weight table a bit
I if a positive instance was misclassi�ed, add 1 to the weight of

each feature in the document
I and conversely . . .

def perceptron_learn(examples, number_iterations):

weights = {}

for iteration in range(number_iterations):

for label, features in examples:

guess = perceptron_classify(features, weights)

if label == "pos" and guess == "neg":

for f in features:

weights[f] = weights.get(f, 0) + 1

elif label == "neg" and guess == "pos":

for f in features:

weights[f] = weights.get(f, 0) - 1

return weights

-20pt

UNIVERSITY OF

GOTHENBURG

vector formulation of the perceptron algorithm

I start with an empty weight vector: w = (0, 0, . . . , 0)
I go through examples, classify according to the current weights

I score = w · x
I each time we misclassify, change the weight vector a bit

I if a positive instance was misclassi�ed, add 1 to the weight of
each feature in the document: w = w + x

I and conversely . . . : w = w − x

-20pt

UNIVERSITY OF

GOTHENBURG

reimplementation in NumPy/scikit-learn

class Perceptron(LinearClassifier):

def __init__(self, n_iter=10):

self.n_iter = n_iter

def fit(self, X, Y):

... some initialization

X = X.toarray() # convert sparse to dense

n_features = X.shape[1]

self.w = numpy.zeros(n_features)

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = self.w.dot(x)

if score < 0 and y == self.positive_class:

self.w += x

elif score >= 0 and y == self.negative_class:

self.w -= x

-20pt

UNIVERSITY OF

GOTHENBURG

a reformulation of the perceptron algorithm

I in many machine learning papers, the positive and negative
class are implicitly represented as +1 and -1, respectively

I then the perceptron algorithm can be written a bit more
compactly

class Perceptron(LinearClassifier):

...

def fit(self, X, Y):

... some initialization

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = self.w.dot(x) * y

if score <= 0:

self.w += y*x

-20pt

UNIVERSITY OF

GOTHENBURG

still too slow. . .

I this implementation uses NumPy's dense vectors

I with a large training set with lots of features, it may be better
to use SciPy's sparse vectors

I however, w is a dense vector and I found it a bit tricky to mix
sparse and dense vectors

I this is the best solution I've been able to come up with for the
two operations w · x and w+=x

def sparse_dense_dot(x, w):

return numpy.dot(w[x.indices], x.data)

def add_to_dense(x, w, xw):

w[x.indices] += xw*x.data

-20pt

UNIVERSITY OF

GOTHENBURG

reimplementation with sparse vectors

class SparsePerceptron(LinearClassifier):

...

def fit(self, X, Y):

... some initialization

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = sparse_dense_dot(x, self.w) * y

if score <= 0:

add_sparse_to_dense(x, self.w, y)

-20pt

UNIVERSITY OF

GOTHENBURG

comparison

I on my computer, with the data set we'll use in assignment 2:
I dense vectors: 17 seconds
I sparse vectors: 3 seconds

-20pt

UNIVERSITY OF

GOTHENBURG

overview

linear classi�ers

case study: the perceptron

training linear classi�ers with optimization

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

optimization and machine learning

I we will now consider models that are less ad-hoc than the
perceptron

I idea: de�ne an objective function based on the fundamental
tradeo� in machine learning:

I how well we handle the training set (loss)
I simplicity of the model (regularization)

I . . . and then the training consists of applying optimization
techniques such as gradient descent to �nd the best w

I we will consider two models:
I support vector classi�er, based on geometry
I logistic regression, based on probability

-20pt

UNIVERSITY OF

GOTHENBURG

margin of separation

I the margin γ denotes how well w separates the classes:

Margin 2

Margin 1

-20pt

UNIVERSITY OF

GOTHENBURG

large margins are good

I a result from statistical learning theory:

expected test error = training error+ BigUglyFormula(
1

γ2
)

I larger margin → better generalization

-20pt

UNIVERSITY OF

GOTHENBURG

support vector machines

I support vector machines (SVMs) or support vector
classi�ers (SVC) are linear classi�ers constructed by selecting
the w that maximizes the margin

I note: the solution depends only on the borderline examples:
the support vectors

I note: this solution is unique, while e.g. perceptron depends on
initialization and processing order

-20pt

UNIVERSITY OF

GOTHENBURG

soft-margin SVMs

I in some cases the dataset is inseparable, or nearly inseparable

I soft-margin SVM: allow some examples to be disregarded
when maximizing the margin

ξi

B) Soft Margin SVM A) Hard Margin SVM

ix
r

ix
r

-20pt

UNIVERSITY OF

GOTHENBURG

implementing the SVM

I the hard-margin and soft-margin SVM can be stated
mathematically in a number of ways

I also, the mathematical formulation leads to an optimization
problem, which can be addressed in many di�erent ways

I general-purpose optimization software
I specialized algorithms (usually better)

I more details later

-20pt

UNIVERSITY OF

GOTHENBURG

linear classi�ers with probabilities?

I we'll consider a linear classi�er that is based on probabilities
rather than geometry

I linear classi�ers select the outputs based on a scoring function:

score = w · x

I how to convert the scores into probabilities?

I idea: use a logistic function:

P(positive output|x) = 1

1+ e−score

where e−score = math.exp(-score)

I this is formally a probability: always between 0 and 1, sum of
probablities of possible outcomes = 1

-20pt

UNIVERSITY OF

GOTHENBURG

the logistic function

-20pt

UNIVERSITY OF

GOTHENBURG

logistic regression

I we �nd the best w by maximum likelihood: select the
parameters to make our dataset maximally probable

I we can train a linear classi�er by adjusting w to maximize the
probability of our training set:

L(w) = P(y1|x1) · . . . · P(yT |xT)

I this model is called logistic regression

I it is equivalent to the maximum entropy classi�er

-20pt

UNIVERSITY OF

GOTHENBURG

in scikit-learn

I SVM is called sklearn.svm.LinearSVC

I LR is called sklearn.linear_model.LogisticRegression

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

-20pt

UNIVERSITY OF

GOTHENBURG

stating SVM and LR formally

I SVM and LR come from di�erent mathematical backgrounds

I however, using a few mathematical tricks, it can be shown
that they both can be written in this form

min
w

λ|w |2 + 1

m

∑
x ,y

Loss(w , x , y)

I the loss function checks how well the classi�er �ts the training
set:

I for SVM: max(0, 1− y · score) (�hinge loss�)
I for LR: log(1+ exp(−y · score)) (� log loss�)

I the �rst part is a regularizer that keeps the classi�er simple
I λ controls the tradeo� between the loss and the regularizer
I some formulations use C instead of λ, with the opposite e�ect

-20pt

UNIVERSITY OF

GOTHENBURG

overview

linear classi�ers

case study: the perceptron

training linear classi�ers with optimization

introduction to assignment 2

-20pt

UNIVERSITY OF

GOTHENBURG

SVM and LR have convex objective functions

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

+

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

+

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

-20pt

UNIVERSITY OF

GOTHENBURG

recap: stochastic gradient descent

I since the objective functions of SVM and LR are convex, we
can �nd w by gradient descent

I stochastic gradient descent: like gradient descent, but we
just compute the gradient for a single example

I pseudocode:

1. set w to some initial value, e.g. all zero
2. if we are �done�, terminate and return w
3. otherwise, select a single training instance x
4. select a �suitable� step length η
5. compute the gradient ∇f (w) using x only

6. subtract η · ∇f (w) from w and go back to step 2

-20pt

UNIVERSITY OF

GOTHENBURG

some comments about assignment 2

I implement the SVM and test it in a document classi�er

I we'll use the Pegasos algorithm � see assignment page

I Pegasos works in an iterative fashion similar to the perceptron
I . . . so if you start from my perceptron code this will be a breeze

I for VG, three additional requirements:
I a small trick to speed up one part of the implementation
I your code should work with sparse feature vectors
I you should you implement logistic regression as well

-20pt

UNIVERSITY OF

GOTHENBURG

some clari�cations about the paper

I the important part of the paper is the pseudocode in Figure 1

I Pegasos adapts the step length η over time: long steps in the
beginning, smaller in the end

I 〈w , x〉 is the dot product w · x
I S is the training set, |S | is the size of S

I T is the number of steps in the algorithm.
I this is a bit di�erent from our perceptron, where we speci�ed

the number of times to process the whole training set.

I the optional line is there for theoretical reasons and can be
ignored

I a subgradient is a gradient for �abrupt� functions such as the
hinge loss

-20pt

UNIVERSITY OF

GOTHENBURG

practical information

I solve the assignment individually

I two lab sessions next week

I deadline one week later: September 24

-20pt

UNIVERSITY OF

GOTHENBURG

seminar next week

I we need two �voluntary� students or pairs to present research
papers at the seminar next week (September 18)

I possible topics:
I predicting a suitable learner level for a sentence (Ildikó's work)
I selecting the correct preposition (�I believe in Santa Claus�)

	linear classifiers
	case study: the perceptron
	training linear classifiers with optimization
	introduction to assignment 2

