Machine Learning for NLP Lecture 3: Linear classifiers

Richard Johansson

September 10, 2015

this lecture

- classifiers in vector spaces: linear classifiers
 - perceptron
 - support vector machines
 - ► logistic regression
- ► implementation in NumPy/SciPy
- introduction to the second assignment

overview

linear classifiers

case study: the perceptron

training linear classifiers with optimization

introduction to assignment 2

recap: basic vector operations

the basic operations on vectors:

- ▶ scaling: $\alpha \cdot \mathbf{v} = \alpha \cdot (\mathbf{v}_1, \dots, \mathbf{v}_n) = (\alpha \cdot \mathbf{v}_1, \dots, \alpha \cdot \mathbf{v}_n)$
- addition and subtraction:

$$\mathbf{v} + \mathbf{w} = (v_1, \dots, v_n) + (w_1, \dots, w_n) = (v_1 + w_1, \dots, v_n + w_n)$$

scalar product or dot product:

$$\mathbf{v} \cdot \mathbf{w} = (v_1, \dots, v_n) \cdot (w_1, \dots, w_n) = v_1 \cdot w_1 + \dots + v_n \cdot w_n$$

vector length or norm:

$$|\mathbf{v}| = |(\mathbf{v}_1, \dots, \mathbf{v}_n)| = \sqrt{\mathbf{v}_1 \cdot \mathbf{v}_1 + \dots + \mathbf{v}_n \cdot \mathbf{v}_n} = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

linear classifiers

a linear classifier is a classifier that is defined in terms of a scoring function like this

score =
$$\mathbf{w} \cdot \mathbf{x}$$

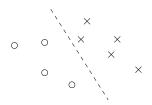
- explanation of the parts:
 - x is a vector with features of what we want to classify (e.g. made with a DictVectorizer)
 - w is a vector representing which features the classifier thinks are important
 - is the dot product between the two vectors
- for now, we'll assume that there are two classes: binary classification
 - return the first class if the score > 0
 - ... otherwise the second class
- the essential idea: features are scored independently

example

"a really good movie"

geometric view

 geometrically, a linear classifier can be interpreted as separating the vector space into two regions with a line (plane, hyperplane)



training linear classifiers

- ► the family of learning algorithms that create linear classifiers is quite large
 - perceptron, Naive Bayes, support vector machine, logistic regression/MaxEnt, . . .
- their underlying theoretical motivations can differ a lot but in the end they all return a weight vector w

a linear classifier in NumPy/scikit-learn

```
class LinearClassifier(BaseEstimator, ClassifierMixin):
    def predict(self, x):
        score = x.dot(self.w)
    if score >= 0.0:
        return self.positive_class
    else:
        return self.negative_class
```


better: handle all instances at the same time

an illustration of the steps

linear separability

a dataset is linearly separable if there exists a w that gives us perfect classification

theorem: if the dataset is linearly separable, then the perceptron learning algorithm will find a separating w in a finite number of steps

a simple example of linear inseparability

a historical note

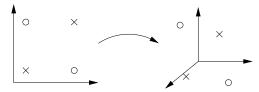
- the perceptron was invented in 1957 by Frank Rosenblatt
 - here's an image (from Wikipedia) of the first implementation
- initially, a lot of hype!
- the realization of its limitations led to a backlash against machine learning in general
 - the nail in the coffin was the publication in 1969 of the book *Perceptrons* by Minsky and Papert
- ▶ new hype in the 1980s, and now...

mapping into a larger vector space

we may add "useful combinations" of features to make the dataset separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
not bad not-bad Positive

► from a geometrical viewpoint: we are creating a feature space with a higher dimensionality:



▶ lots of features → LOTS of combinations

overview

linear classifiers

case study: the perceptron

training linear classifiers with optimization

introduction to assignment 2

recap: our simple perceptron implementation

- start with an empty weight table
- go through examples, classify according to the current weights
- each time we misclassify, change the weight table a bit
 - ▶ if a positive instance was misclassified, add 1 to the weight of each feature in the document
 - ▶ and conversely . . .

recap: our simple perceptron implementation

- start with an empty weight table
- go through examples, classify according to the current weights
- each time we misclassify, change the weight table a bit
 - if a positive instance was misclassified, add 1 to the weight of each feature in the document
 - and conversely . . .

vector formulation of the perceptron algorithm

- ▶ start with an empty weight vector: $\mathbf{w} = (0, 0, \dots, 0)$
- ▶ go through examples, classify according to the current weights
 - \triangleright score = $\mathbf{w} \cdot \mathbf{x}$
- each time we misclassify, change the weight vector a bit
 - if a positive instance was misclassified, add 1 to the weight of each feature in the document: $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - ▶ and conversely . . . : $\mathbf{w} = \mathbf{w} \mathbf{x}$

reimplementation in NumPy/scikit-learn

```
class Perceptron(LinearClassifier):
   def __init__(self, n_iter=10):
        self.n iter = n iter
   def fit(self, X, Y):
        # ... some initialization
        X = X.toarray() # convert sparse to dense
        n_features = X.shape[1]
        self.w = numpy.zeros( n_features )
        for i in range(self.n_iter):
            for x, y in zip(X, Y):
                score = self.w.dot(x)
                if score < 0 and y == self.positive_class:
                    self.w += x
                elif score >= 0 and y == self.negative_class:
                    self.w -= x
```


a reformulation of the perceptron algorithm

- ▶ in many machine learning papers, the positive and negative class are implicitly represented as +1 and -1, respectively
- then the perceptron algorithm can be written a bit more compactly

```
class Perceptron(LinearClassifier):
   # ...
    def fit(self, X, Y):
        # ... some initialization
        for i in range(self.n_iter):
            for x, y in zip(X, Y):
                score = self.w.dot(x) * y
                if score <= 0:
                    self.w += y*x
```


still too slow...

- this implementation uses NumPy's dense vectors
- with a large training set with lots of features, it may be better to use SciPy's sparse vectors
- ▶ however, w is a dense vector and I found it a bit tricky to mix sparse and dense vectors
- ▶ this is the best solution I've been able to come up with for the two operations $\mathbf{w} \cdot \mathbf{x}$ and $\mathbf{w} += \mathbf{x}$

```
def sparse_dense_dot(x, w):
    return numpy.dot(w[x.indices], x.data)

def add_to_dense(x, w, xw):
    w[x.indices] += xw*x.data
```

reimplementation with sparse vectors

```
class SparsePerceptron(LinearClassifier):
   # ...
    def fit(self, X, Y):
        # ... some initialization
        for i in range(self.n_iter):
            for x, y in zip(X, Y):
                score = sparse_dense_dot(x, self.w) * y
                if score <= 0:
                    add_sparse_to_dense(x, self.w, y)
```


comparison

- ▶ on my computer, with the data set we'll use in assignment 2:
 - ▶ dense vectors: 17 seconds
 - ► sparse vectors: 3 seconds

overview

linear classifiers

case study: the perceptron

training linear classifiers with optimization

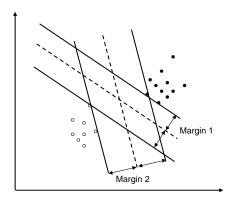
introduction to assignment 2

optimization and machine learning

- we will now consider models that are less ad-hoc than the perceptron
- idea: define an objective function based on the fundamental tradeoff in machine learning:
 - how well we handle the training set (loss)
 - simplicity of the model (regularization)
- ightharpoonupand then the training consists of applying optimization techniques such as gradient descent to find the best w
- we will consider two models:
 - support vector classifier, based on geometry
 - logistic regression, based on probability

margin of separation

ightharpoonup the margin γ denotes how well $oldsymbol{w}$ separates the classes:



large margins are good

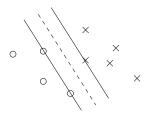
a result from statistical learning theory:

expected test error = training error + BigUglyFormula
$$(\frac{1}{\gamma^2})$$

▶ larger margin → better generalization

support vector machines

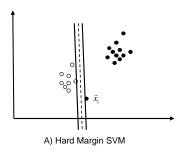
support vector machines (SVMs) or support vector classifiers (SVC) are linear classifiers constructed by selecting the w that maximizes the margin

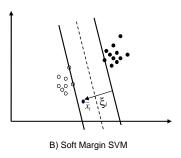


- ▶ note: the solution depends only on the borderline examples: the support vectors
- note: this solution is unique, while e.g. perceptron depends on initialization and processing order

soft-margin SVMs

- in some cases the dataset is inseparable, or nearly inseparable
- ► soft-margin SVM: allow some examples to be disregarded when maximizing the margin





implementing the SVM

- the hard-margin and soft-margin SVM can be stated mathematically in a number of ways
- also, the mathematical formulation leads to an optimization problem, which can be addressed in many different ways
 - general-purpose optimization software
 - specialized algorithms (usually better)
- more details later

linear classifiers with probabilities?

- we'll consider a linear classifier that is based on probabilities rather than geometry
- ▶ linear classifiers select the outputs based on a scoring function:

$$score = w \cdot x$$

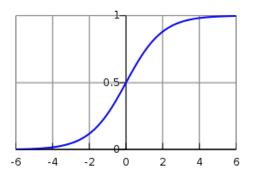
- how to convert the scores into probabilities?
- ▶ idea: use a logistic function:

$$P(\text{positive output}|x) = \frac{1}{1 + e^{-\text{score}}}$$

where $e^{-score} = \text{math.exp(-score)}$

▶ this is formally a probability: always between 0 and 1, sum of probablities of possible outcomes = 1

the logistic function



logistic regression

- we find the best w by maximum likelihood: select the parameters to make our dataset maximally probable
- we can train a linear classifier by adjusting w to maximize the probability of our training set:

$$L(\mathbf{w}) = P(y_1|\mathbf{x}_1) \cdot \ldots \cdot P(y_T|\mathbf{x}_T)$$

- this model is called logistic regression
- it is equivalent to the maximum entropy classifier

in scikit-learn

- ► SVM is called sklearn.svm.LinearSVC
- ► LR is called sklearn.linear_model.LogisticRegression

stating SVM and LR formally

- SVM and LR come from different mathematical backgrounds
- however, using a few mathematical tricks, it can be shown that they both can be written in this form

$$\min_{\mathbf{w}} \lambda |\mathbf{w}|^2 + \frac{1}{m} \sum_{\mathbf{x}, \mathbf{y}} \mathsf{Loss}(\mathbf{w}, \mathbf{x}, \mathbf{y})$$

- the loss function checks how well the classifier fits the training set:
 - for SVM: $max(0, 1 y \cdot score)$ ("hinge loss")
 - ▶ for LR: $log(1 + exp(-y \cdot score))$ ("log loss")
- the first part is a regularizer that keeps the classifier simple
 - lacktriangledown λ controls the tradeoff between the loss and the regularizer
 - **>** some formulations use C instead of λ , with the opposite effect

overview

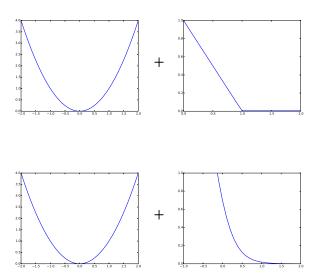
linear classifiers

case study: the perceptron

training linear classifiers with optimization

introduction to assignment 2

SVM and LR have convex objective functions



recap: stochastic gradient descent

- since the objective functions of SVM and LR are convex, we can find w by gradient descent
- stochastic gradient descent: like gradient descent, but we just compute the gradient for a single example
- pseudocode:
 - 1. set w to some initial value, e.g. all zero
 - 2. if we are "done", terminate and return w
 - 3. otherwise, select a single training instance x
 - 4. select a "suitable" step length η
 - 5. compute the gradient $\nabla f(\mathbf{w})$ using \mathbf{x} only
 - 6. subtract $\eta \cdot \nabla f(\mathbf{w})$ from \mathbf{w} and go back to step 2

some comments about assignment 2

- implement the SVM and test it in a document classifier
- ▶ we'll use the **Pegasos** algorithm see assignment page
- ▶ Pegasos works in an iterative fashion similar to the perceptron
 - ...so if you start from my perceptron code this will be a breeze
- for VG, three additional requirements:
 - ▶ a small trick to speed up one part of the implementation
 - your code should work with sparse feature vectors
 - you should you implement logistic regression as well

some clarifications about the paper

- the important part of the paper is the pseudocode in Figure 1
- ightharpoonup Pegasos adapts the step length η over time: long steps in the beginning, smaller in the end
- $\triangleright \langle w, x \rangle$ is the dot product $w \cdot x$
- \triangleright S is the training set, |S| is the size of S
- T is the number of steps in the algorithm.
 - ▶ this is a bit different from our perceptron, where we specified the number of times to process the whole training set.
- the optional line is there for theoretical reasons and can be ignored
- a subgradient is a gradient for "abrupt" functions such as the hinge loss

practical information

- solve the assignment individually
- two lab sessions next week
- deadline one week later: September 24

seminar next week

- we need two "voluntary" students or pairs to present research papers at the seminar next week (September 18)
- possible topics:
 - predicting a suitable learner level for a sentence (Ildikó's work)
 - selecting the correct preposition ("I believe in Santa Claus")

