
Machine Learning for NLP
Bonus lecture: The averaged perceptron

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 11, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

overview

I a simple modi�cation of the perceptron algorithm

I often gives quite nice improvements in practice

-20pt

UNIVERSITY OF

GOTHENBURG

perceptron pseudocode

w = (0, . . . , 0)
repeat N times

for (x i , yi) in training set T
score = y ·w · x i

if score ≤ 0

w = w + y · x
return w

-20pt

UNIVERSITY OF

GOTHENBURG

a problem with the perceptron?

I we return the most recent version of the weight vector

I intuitively, this version is over-adapted to the last few

instances, and may work less well for other instances

-20pt

UNIVERSITY OF

GOTHENBURG

intuition: combining classi�ers by voting or averaging

I let's assume we have a lot of classi�ers

I each of them has its own strengths and weaknesses

I could they somehow work together?
I voting: return the output favored by most of the classi�ers
I averaging: compute the prediction scores for all classi�ers;

return the output selected by considering the average of all the

scores

-20pt

UNIVERSITY OF

GOTHENBURG

using averaging to handle the over�tting problem

I in the perceptron, each version of the weight vector can be
seen as a separate classi�er

I so we have N · |T | classi�ers
I each of them is over-adapted to the last examples it saw

I but if we compute their average, then maybe we get

something that works better overall?

I averaged perceptron: return the average of all versions of

the weight vector

-20pt

UNIVERSITY OF

GOTHENBURG

averaged perceptron pseudocode (naive)

w0 = (0, . . . , 0)
t = 0

repeat N times

for (x i , yi) in training set T
score = y ·w t · x i

if score ≤ 0

w t+1 = w t + yi · x i

else

w t+1 = w t

t = t + 1

return
w1+...+wN·|T |

N·|T |

-20pt

UNIVERSITY OF

GOTHENBURG

this is too impractical!

I it's a waste of memory to remember all the versions of w that

we have used during training

I can we do something smarter?

-20pt

UNIVERSITY OF

GOTHENBURG

an observation

I the weight vector w3 is the sum of all updates so far:

w0 = (0, . . . , 0)
w1 = w0 + ∆1 = ∆1

w2 = w1 + ∆2 = ∆1 + ∆2

w3 = w2 + ∆3 = ∆1 + ∆2 + ∆3

I the average of three vectors can be written:

w1 + w2 + w3

3
=

∆1

3
+

∆1 + ∆2

3
+

∆1 + ∆2 + ∆3

3

=
3

3
∆1 +

2

3
∆2 +

1

3
∆3

-20pt

UNIVERSITY OF

GOTHENBURG

better averaged perceptron

w = (0, . . . , 0)
a = (0, . . . , 0)
step = N · |T |
repeat N times

for (x i , yi) in training set T
score = yi ·w · x i

if score ≤ 0

w = w + yi · x i

a = a + step
N·|T |yi · x i

step = step − 1

return a

-20pt

UNIVERSITY OF

GOTHENBURG

in Python

class AveragedSparsePerceptron(LinearClassifier):

...

def fit(self, X, Y):

... initialization ...

w = numpy.zeros(n_features)

a = numpy.zeros(n_features)

NT = self.n_iter * len(Y)

step = NT

for i in range(self.n_iter):

for x, y in zip(X, Yn):

score = sparse_dense_dot(x, w) * y

if score <= 0:

add_sparse_to_dense(x, w, float(y))

add_sparse_to_dense(x, a, step * float(y) / NT)

step -= 1

self.w = a

-20pt

UNIVERSITY OF

GOTHENBURG

experiment (assignment 2 dataset)

I standard: training time 3.4 sec, accuracy 0.809

I averaged: training time 3.6 sec, accuracy 0.829

