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overview

multiclass linear classifiers
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two-class (binary) linear classifiers

» a linear classifier is a classifier that is defined in terms of a
scoring function like this

sCcore = w - X

» this is a binary (2-class) classifier:

» return the first class if the score > 0
» ...otherwise the second class

» how can we deal with non-binary (multi-class) problems when
using linear classifiers?
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decomposing multi-class classification problems

» idea 1: break down the complex problem into simpler
problems, train a classifier for each
» one-versus-rest (“long jump”):
» for each class ¢, make a binary classifier to distinguish ¢ from
all other classes
» so if there are n classes, there are n classifiers
> at test time, we select the class giving the highest score
» one-versus-one (“football league”):
» for each pair of classes ¢; and ¢, make a classifier to
distinguish ¢; from ¢,
» if there are n classes, there are "'("271) classifiers
> at test time, we select the class that has most “wins”
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example

» assume we're training a function tagger and we have the
classes SBJ, 0BJ, ADV
> in one-vs-rest, we train the following three classifiers:

» SBJ vs 0BJ+ADV
» 0BJ vs SBJ+ADV
» ADV vs SBJ+0BJ

> in one-vs-one, we train the following three:

» SBJ vs OBJ
» SBJ vs ADV
» 0BJ vs ADV
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in scikit-learn

» scikit-learn includes implementations of both of the methods
we have discussed:

» OneVsRestClassifier
» OneVsOneClassifier

» however, the built-in algorithms (e.g. Perceptron,
LinearSVC) will do this automatically for you

> they use one-versus-rest
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http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html

multiclass learning algorithms

> is it good to separate the multiclass task into smaller tasks
that are trained independently?

» maybe training should be similar to testing?

» idea 2: make a perceptron where one-vs-rest is used while
training
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multiclass perceptron

» in the multiclass perceptron, we make error-driven updates
just like in the binary perceptron
> we keep one weight vector w, for each class y
» assume that we have misclassified an instance x: the true class
was y but we guessed g
» then we add the features of x to w,, and subtract from w,

wy, = (0,...,0) for each class y
repeat N times
for (x;,y;) in the training set T
g = arg max, Wy - X;
if g is not equal to y;
Wy, = Wy, + Xj
Wg = Wg — X
return wy, ...

UNIVERSITY OF
GOTHENBURG



in NumPy/scikit-learn (dense vectors)

class MulticlassPerceptron():
# some initialization...

def fit(self, X, Y):
# some initializationm...

self.ws = numpy.zeros( (n_classes, n_features) )

for i in range(self.n_iter):
for x, y in XY:
scores = numpy.dot(self.ws, x)
guess = scores.argmax()
if guess != y:
self.ws[y] += x
self.ws[guess] -= x
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multiclass LR and SVM
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this idea can also be used when training SVM and LR

in the Pegasos paper, the last two rows in the table on page
15 correspond to multiclass SVM and LR, respectively
notice the similarity of the multiclass SVM update to the
multiclass perceptron!

in scikit-learn:

» LinearSVC(multi_class=’crammer_singer’)
» LogisticRegression(multi_class=’multinomial’)



overview

structured problems: overview
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this lecture

» in many NLP tasks, the output is not just a category: it's a
complex object
» sequences, trees, translations, ...
» structured prediction: for an input x, the set of possible
outputs
» depends on the input x
> is very large — typically exponential in the size of x
» consists of many small but interdependent parts
» this type of problem is central in NLP but not so often taught
in machine learning courses!
» ...many of the most important ideas were invented by NLP
researchers
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example: sequences

> input: a sequence (for instance, words)

> output: another sequence (for instance, PoS tags)

The rain falls hard
DT NN VvBzZ JJ
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example: dependency parse trees

= """ "¢

s = <D> Lisa walks home ¥ = m/-\



example: noun phrase coreference

» input: a document, and a list of the noun phrases in the
document

» output: 7
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example: temporal structure

» input: a document, and a list of the events in the document

» output: 7
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two high-level approaches

» step-by-step prediction:
» break down the complex prediction problem into a sequence of

simple decisions
» train a classifier to select the right decision at each step

» example: transition-based parsing (Nivre)
» task-specific learning: modify the learning algorithm so that
it handles the complex problem directly
» for instance, we can make a “parsing perceptron”
» example: graph-based parsing (McDonald)
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overview

step-by-step structured prediction
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step-by-step prediction: general ideas

» break down the problem into a sequence of smaller decisions
» think of it as a system that gradually consumes input and
generates output
» while doing that, the system has some notion of what it is
doing: a state
» formally: a state machine

» use standard classifiers to guess the next step

» the classifiers use features from the input and from the state
» we might need to constrain the classifiers to keep the output
consistent
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example: part-of-speech tagging

> input: words
> output: tags

> state: position in sentence; previous outputs

The rain falls hard
(START)
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example: part-of-speech tagging

> input: words
> output: tags

> state: position in sentence; previous outputs

The rain falls hard
(START) DT NN VBzZ JJ
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case study: SVMTool
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we can extract features from the history (the previous
decisions), but not from the future

see the paper Fast and Accurate Part-of-Speech Tagging: The
SVM Approach Revisited by Giménez and Marquez (2004)
note how they use features for the tags to the right

> “the next tag has the ambiguity class VBZ |NNS"
» “the next tag might be VBZ"



example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]
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example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]

> typical solution: Beginning/Inside/Outside coding

United Nations official Ekeus heads for Baghdad
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example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]

> typical solution: Beginning/Inside/Outside coding
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example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]

> typical solution: Beginning/Inside/Outside coding

United Nations official Ekeus heads for Baghdad
B-ORG I-ORG
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example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]

> typical solution: Beginning/Inside/Outside coding
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example: named entity tagging

> input: a sentence

» output: names in the sentence bracketed and labeled

United Nations official Ekeus heads for .
[ ORG ] [ PER | [ LOC ]

> typical solution: Beginning/Inside/Outside coding

United Nations official Ekeus heads for Baghdad
B-ORG I-ORG 0] B-PER 0] 0] 0]

» see Ratinov and Roth: Design challenges and misconceptions
in named entity recognition. CoNLL 2009.
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recap: transition-based parsing

> input: words
» output: dependency edges

» state: stack and queue, and the edges we've output so far
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transition-based parsing example

S 0
D ’<D> ‘Then‘ we ‘met‘ the ‘cat ‘ . ‘
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transition-based parsing example

S Q

’<D>‘ met‘the ‘cat ‘ . ‘

Then we



transition-based parsing example
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transition-based parsing example

NS Q0
’<D>L’rﬁet ‘ ’ cat ‘
7
Then we the

C unveRsITY OF
S8 GOTHENBURG



transition-based parsing example

S
<D> met ’—‘

Then We

C unveRsITY OF
S8 GOTHENBURG



transition-based parsing example
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transition-based parsing example
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discussion: noun phrase coreference

» the problem:

» input: a document and its noun phrases
» output: (what we discussed before)

» how can we solve the problem in a step-by-step fashion?
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discussion: temporal structure

» the problem:

» input: a document and its events
» output: (what we discussed before)

» how can we solve the problem in a step-by-step fashion?
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training step-by-step systems: the basic approach

» how can we train the decision classifier in a step-by-step
system?
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training step-by-step systems: the basic approach

» how can we train the decision classifier in a step-by-step
system?
» the simple approach: learn to imitate an expert

» force the system to generate the correct output
» observe the states we pass along the way

» use them as examples and train the classifier
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what happens when we just try to imitate the expert?
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image: Ross, Gordon, and Bagnell (2011)
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training step-by-step systems: more carefully

> a problem: if we just generate states perfectly, our training set
contains no examples of bad states

» ...so we don't learn to recover from errors!

» one solution: mix expert-generated states with automatically
generated states in the training set

» further reading:
» http://hunch.net/~12s/
» SEARN: Daumé lll et al: Search-based structured prediction,
Machine Learning Journal, 2009.
» DAGGER: Ross et al: A reduction of imitation learning and
structured prediction to no-regret online learning, AISTATS
2011.
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http://hunch.net/~l2s/

going beyond greedy decisions

> step-by-step systems tend to be greedy: they select what
looks like the best decision at the moment, and can’t regret
that decision

» beam search can reduce this problem: keep track of the N
top-scoring results, not just one

» for coding details: see instructions for VG part of assignment
» example in dependency parsing: Johansson and Nugues
Investigating Multilingual Dependency Parsing, CoNLL 2006.

» often improves the the accuracy, but obviously makes the
system slower
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overview

task-specific learning
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task-specific learning

> the second high-level approach is that we integrate the task
(e.g. parsing, tagging) into the learning process
» we adapt our learning methods:

» perceptron — structured perceptron
» SVM — structured SVM
» LR — conditional random field
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recap: multiclass perceptron

W = zero vector
repeat N times
for (x;,y;) in the training set T
g = guess(w, x;)
if g is not equal to y;
change w to increase the score of y;
change w to decrease the score of g
return w
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reranking

» assume that we have a simple system that is easy to train and
fast to run, but uses a linguistic model that is too simple

» for instance, a PCFG parser or an IBM model in translation
» may have made linguistically problematic assumptions in order
to make the system computationally efficient

» how can we build a smarter system on top of the simple one?
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reranking

» assume that we have a simple system that is easy to train and
fast to run, but uses a linguistic model that is too simple
» for instance, a PCFG parser or an IBM model in translation
» may have made linguistically problematic assumptions in order
to make the system computationally efficient

» how can we build a smarter system on top of the simple one?

» reranking:
> let the simplistic system generate k hypotheses
» then use another system to select one of them
» the reranker doesn’t have to care about efficiency, so it can use
any information
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example: translation reranking

Is the stomach empty on you?
Kas sul kéht on tiihi? Do you have an empty stomach?
Are you starved?
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a linear model for a reranker

> let's assume that we have a list of hypotheses H
» for instance, the top 50 parse trees generated by a PCFG

» for each hypothesis h, we can extract some features using the
function f(h)

» we'll implement the reranker by using a scoring function with a
weight vector w

score(w, h) = w - f(h)

» then, for a hypothesis list H, we select the h that maximizes
the scoring function

SELECT(w, H) = argmax w - f(h)
heH
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adapting the perceptron for reranking

» when training a reranker, our training set 7 consists of
hypothesis lists for each input

» and for each H;, we have selected the best output y;

» how can we find the weight vector w?
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adapting the perceptron for reranking

» when training a reranker, our training set 7 consists of
hypothesis lists for each input

» and for each H;, we have selected the best output y;
» how can we find the weight vector w?

> let's do something similar to the multiclass perceptron:

w = zero vector
repeat NV times
for (Hi,y;)in T
g = SELECT(w, H;)
w=w+f(y)-f(g)
return w
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examples

» parsing example: see Charniak and Johnson: Coarse-to-fine
n-best parsing and MaxEnt discriminative reranking, ACL
2005.

» MT example: see
http://www.statmt.org/survey/Topic/Reranking
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going further: task-specific learning for dependency parsing

» the multiclass perceptron can be adapted to general prediction
tasks — not just reranking

> let’s see how to do dependency parsing in this framework
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going further: task-specific learning for dependency parsing

» the multiclass perceptron can be adapted to general prediction
tasks — not just reranking
> let’s see how to do dependency parsing in this framework

> let’s assume we can extract a feature vector f(x, y) for a
sentence x and a parse tree y

> SO we Can use a weight vector w to score parse trees

score(w, x,y) =w - f(x,y)

> we also have some procedure PARSE(w, x) that finds the
top-scoring parse tree y

PARSE(w, x) = argmaxw - f(x,y)
y
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pseudocode: “parsing perceptron”

» we'd like to train the dependency parser: that is, find a weight
vector w that scores good parses higher than bad parses

> in this case, our training set T consists of sentences x coupled
with their corresponding gold-standard parse tree y

» how can we find the weight vector w?
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pseudocode: “parsing perceptron”

» we'd like to train the dependency parser: that is, find a weight
vector w that scores good parses higher than bad parses

> in this case, our training set T consists of sentences x coupled
with their corresponding gold-standard parse tree y

» how can we find the weight vector w?

> almost the same idea as in the reranking perceptron:

w = zero vector
repeat N times
for (X,',y,') in T
g = PARSE(w, x;)
w=w + f(xi,y) — f(xi,g)
return w
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graph-based parsing

» so what about the missing pieces?

» what is the feature function f(x,y)?
» how do we find the highest-scoring tree? PARSE(w, x;)

» there are many ways they could be implemented; we'll briefly
go through the famous maximum spanning tree parser
(MST Parser)

» see McDonald, Crammer and Pereira, Online Large-Margin
Training of Dependency Parsers, ACL 2005.

» MSTParser is a special case of a graph-based parser — a
parser where we search for the best tree in a graph
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edge-factored feature representation

TN

<D> Lisa walks home

» MSTParser uses an edge-factored model, where features are
extracted from each edge in a parse tree:

f(X7.)/) - fedge(x, <D>—>Wa|ks)+
+£ edge(x, walks—Lisa)+
+F edge(x, walks—home)

> the edges are scored independently of each other
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MSTParser: scoring the edges and finding the best tree

<D>
X Llsa walks home o $
\ 10
= AN
RN
mPp Lisa walks home mmp N -
Rreeeee] 20 ¢ »O S
3
11
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finding the maximum spanning tree

<D>
9 9
10
PN N
Lisa walks home  e— Llsa walks home

3 3

11 11

» the Chu—-Liu/Edmonds algorithm:
1. for each node, find the top-scoring incoming edge
2. if there are no cycles, we are done
3. if there is a cycle, create a single node containing the cycle
4. find the MST in the new graph (recursion)
5. break the cycle...

» also: Eisner algorithm, similar to CKY (see McDonald paper)
» CL/E finds the highest-scoring tree
B s > Eisner finds the highest-scoring projective tree

GOTHENBURG



discussion

» what do we need to implement a PoS tagger in this way?
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discussion

» what do we need to implement a PoS tagger in this way?

» see the classic paper by Collins: Discriminative Training
Methods for Hidden Markov Models: Theory and Experiments
with Perceptron Algorithms, EMNLP 2002
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structure-prediction variants of SVM and LR

» what we called the “parsing perceptron” is typically called the
structured perceptron

» as we saw, the parts specific to parsing can be replaced
» the feature function: f(x,y)?
» finding the highest-scoring tree: PARSE(w, x;)
» SVM can be adapted in a very similar way
» multiclass Pegasos can be applied without change
» the counterpart of LR is called conditional random field

» it is probably the most popular model for sequence tagging
» not so popular for other problems, since it's a bit more
complicated to implement
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software libraries
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there isn’t anything comparable to scikit-learn for structured
prediction
PyStruct: https://pystruct.github.io
» contains a number of learning algorithms as well as
optimization tools to help implementing the arg max
» designed to be compatible with scikit-learn
» unfortunately, can’t yet handle sparse feature vectors. . .

several specialized libraries, mostly for sequence tagging with
CRF:

» Mallet — a Java library that can be called from NLTK

> CRF++

» CRF-SGD - very efficient, will be used in the assignment
seqlearn: http://larsmans.github.io/seqlearn

» implemented by one of the designers of scikit-learn

» only sequence tagging


https://pystruct.github.io
http://larsmans.github.io/seqlearn

step-by-step or task-specific: pros and cons

> step-by-step systems
> are easier to build
» tend to be faster
» are less restrictive about features
» can build on existing ML packages

» task-specific models are more accurate for some problems

» for the dependency parsing, there have been some studies
comparing transition-based and graph-based methods from a
linguistic perspective
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example:

parser comparison

Sammanstallning parsrar

parser korrekthet | linkkorrekthet 4 | tid/mening kommentar
LTH 82.43 88.58 0.193 2-ordning, pseudoprojektiv, Brown-kluster
Mate-tools | 81.65 87.93 0.141 ickeprojektiv, Brown-kluster
TurboParser | 79.91 87.31 0.053
ZPar 80.78 8726 0.180 projektiv
MSTParser | 78.14 86.32 0.119 2-ordning, ickeprojektiv
MaltParser | 78.42 85.17 0.005 ickeprojektiv, Brown-kluster, tranad enligt instruktioner av johan Hall
Huang 84.74 0.017 projektiv, inga funktioner
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overview

information about assignment 3
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assignment 3

United Nations official Ekeus heads for .
[ ORG ] [ PER ] [ LOC ]

> implement a named entity tagger
> step-by-step sequence tagging approach
> naive training
» compare to an off-the-shelf CRF
» file processing and evaluation code will be provided

» for a VG, implement a beam search
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