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two-class (binary) linear classi�ers

I a linear classi�er is a classi�er that is de�ned in terms of a
scoring function like this

score = w · x

I this is a binary (2-class) classi�er:
I return the �rst class if the score > 0
I . . . otherwise the second class

I how can we deal with non-binary (multi-class) problems when
using linear classi�ers?
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decomposing multi-class classi�cation problems

I idea 1: break down the complex problem into simpler
problems, train a classi�er for each

I one-versus-rest (�long jump�):
I for each class c, make a binary classi�er to distinguish c from

all other classes
I so if there are n classes, there are n classi�ers
I at test time, we select the class giving the highest score

I one-versus-one (�football league�):
I for each pair of classes c1 and c2, make a classi�er to

distinguish c1 from c2
I if there are n classes, there are n·(n−1)

2
classi�ers

I at test time, we select the class that has most �wins�
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example

I assume we're training a function tagger and we have the
classes SBJ, OBJ, ADV

I in one-vs-rest, we train the following three classi�ers:
I SBJ vs OBJ+ADV
I OBJ vs SBJ+ADV
I ADV vs SBJ+OBJ

I in one-vs-one, we train the following three:
I SBJ vs OBJ
I SBJ vs ADV
I OBJ vs ADV
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in scikit-learn

I scikit-learn includes implementations of both of the methods
we have discussed:

I OneVsRestClassifier
I OneVsOneClassifier

I however, the built-in algorithms (e.g. Perceptron,
LinearSVC) will do this automatically for you

I they use one-versus-rest

http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html


-20pt

UNIVERSITY OF

GOTHENBURG

multiclass learning algorithms

I is it good to separate the multiclass task into smaller tasks
that are trained independently?

I maybe training should be similar to testing?

I idea 2: make a perceptron where one-vs-rest is used while
training
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multiclass perceptron

I in the multiclass perceptron, we make error-driven updates
just like in the binary perceptron

I we keep one weight vector wy for each class y

I assume that we have misclassi�ed an instance x : the true class
was y but we guessed g

I then we add the features of x to wy , and subtract from wg

w y = (0, . . . , 0) for each class y
repeat N times
for (x i , yi ) in the training set T
g = argmaxy w y · x i
if g is not equal to yi
w yi

= w yi
+ x i

wg = wg − x i

return w1, . . .
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in NumPy/scikit-learn (dense vectors)

class MulticlassPerceptron():

# some initialization...

def fit(self, X, Y):

# some initialization...

self.ws = numpy.zeros( (n_classes, n_features) )

for i in range(self.n_iter):

for x, y in XY:

scores = numpy.dot(self.ws, x)

guess = scores.argmax()

if guess != y:

self.ws[y] += x

self.ws[guess] -= x
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multiclass LR and SVM

I this idea can also be used when training SVM and LR

I in the Pegasos paper, the last two rows in the table on page
15 correspond to multiclass SVM and LR, respectively

I notice the similarity of the multiclass SVM update to the
multiclass perceptron!

I in scikit-learn:
I LinearSVC(multi_class='crammer_singer')
I LogisticRegression(multi_class='multinomial')
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this lecture

I in many NLP tasks, the output is not just a category: it's a
complex object

I sequences, trees, translations, . . .

I structured prediction: for an input x , the set of possible
outputs

I depends on the input x
I is very large � typically exponential in the size of x
I consists of many small but interdependent parts

I this type of problem is central in NLP but not so often taught
in machine learning courses!

I . . . many of the most important ideas were invented by NLP
researchers
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example: sequences

I input: a sequence (for instance, words)

I output: another sequence (for instance, PoS tags)

The rain falls hard .
DT NN VBZ JJ .
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example: dependency parse trees

t1  =

<D> Lisa walks =s home

t  =

t  =

t  =

t  =

t  =

t  =

2

3

4

5

6

7
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example: noun phrase coreference

I input: a document, and a list of the noun phrases in the
document

I output: ?
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example: temporal structure

I input: a document, and a list of the events in the document

I output: ?
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two high-level approaches

I step-by-step prediction:
I break down the complex prediction problem into a sequence of

simple decisions
I train a classi�er to select the right decision at each step
I example: transition-based parsing (Nivre)

I task-speci�c learning: modify the learning algorithm so that
it handles the complex problem directly

I for instance, we can make a �parsing perceptron�
I example: graph-based parsing (McDonald)
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step-by-step prediction: general ideas

I break down the problem into a sequence of smaller decisions
I think of it as a system that gradually consumes input and

generates output
I while doing that, the system has some notion of what it is

doing: a state
I formally: a state machine

I use standard classi�ers to guess the next step
I the classi�ers use features from the input and from the state
I we might need to constrain the classi�ers to keep the output

consistent
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example: part-of-speech tagging

I input: words

I output: tags

I state: position in sentence; previous outputs

The rain falls hard .
(START)

DT NN VBZ JJ .
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example: part-of-speech tagging

I input: words

I output: tags

I state: position in sentence; previous outputs

The rain falls hard .
(START) DT NN VBZ JJ

.
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I output: tags

I state: position in sentence; previous outputs
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case study: SVMTool

I we can extract features from the history (the previous
decisions), but not from the future

I see the paper Fast and Accurate Part-of-Speech Tagging: The

SVM Approach Revisited by Giménez and Màrquez (2004)

I note how they use features for the tags to the right
I �the next tag has the ambiguity class VBZ|NNS�
I �the next tag might be VBZ�
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example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG

I-ORG O B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG

O B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O

B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER

O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O

O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O

B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O B-LOC

O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

example: named entity tagging

I input: a sentence

I output: names in the sentence bracketed and labeled

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I typical solution: Beginning/Inside/Outside coding

United Nations o�cial Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O B-LOC O

I see Ratinov and Roth: Design challenges and misconceptions

in named entity recognition. CoNLL 2009.



-20pt

UNIVERSITY OF

GOTHENBURG

recap: transition-based parsing

I input: words

I output: dependency edges

I state: stack and queue, and the edges we've output so far
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transition-based parsing example

<D> we met .Then

S Q

the cat



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

we met .Then

Q

<D>

S

the cat



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

we met .<D>

Q

Then

S

the cat



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

met .<D> Then the cat

Q

we

S



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

<D> Then

S

.the catmet

Q

we



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

S

.the catmet

Q

weThen

<D>



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

met

weThen

.the cat

QS

<D>



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

met

weThen

<D> .catthe

QS



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

.cat

Q

the

<D> met

weThen

S



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example

cat

the

<D> met

weThen

.

QS



-20pt

UNIVERSITY OF

GOTHENBURG

transition-based parsing example
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discussion: noun phrase coreference

I the problem:
I input: a document and its noun phrases
I output: (what we discussed before)

I how can we solve the problem in a step-by-step fashion?
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discussion: temporal structure

I the problem:
I input: a document and its events
I output: (what we discussed before)

I how can we solve the problem in a step-by-step fashion?
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training step-by-step systems: the basic approach

I how can we train the decision classi�er in a step-by-step
system?

I the simple approach: learn to imitate an expert
I force the system to generate the correct output
I observe the states we pass along the way
I use them as examples and train the classi�er
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what happens when we just try to imitate the expert?

image: Ross, Gordon, and Bagnell (2011)
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training step-by-step systems: more carefully

I a problem: if we just generate states perfectly, our training set
contains no examples of bad states

I . . . so we don't learn to recover from errors!

I one solution: mix expert-generated states with automatically
generated states in the training set

I further reading:
I http://hunch.net/~l2s/
I SEARN: Daumé III et al: Search-based structured prediction,

Machine Learning Journal, 2009.
I DAGGER: Ross et al: A reduction of imitation learning and

structured prediction to no-regret online learning, AISTATS
2011.

http://hunch.net/~l2s/
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going beyond greedy decisions

I step-by-step systems tend to be greedy: they select what
looks like the best decision at the moment, and can't regret
that decision

I beam search can reduce this problem: keep track of the N
top-scoring results, not just one

I for coding details: see instructions for VG part of assignment
I example in dependency parsing: Johansson and Nugues

Investigating Multilingual Dependency Parsing, CoNLL 2006.

I often improves the the accuracy, but obviously makes the
system slower
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task-speci�c learning

I the second high-level approach is that we integrate the task
(e.g. parsing, tagging) into the learning process

I we adapt our learning methods:
I perceptron → structured perceptron
I SVM → structured SVM
I LR → conditional random �eld
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recap: multiclass perceptron

w = zero vector
repeat N times
for (x i , yi ) in the training set T
g = guess(w , x i )
if g is not equal to yi

change w to increase the score of yi
change w to decrease the score of g

return w
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reranking

I assume that we have a simple system that is easy to train and
fast to run, but uses a linguistic model that is too simple

I for instance, a PCFG parser or an IBM model in translation
I may have made linguistically problematic assumptions in order

to make the system computationally e�cient

I how can we build a smarter system on top of the simple one?

I reranking:
I let the simplistic system generate k hypotheses
I then use another system to select one of them
I the reranker doesn't have to care about e�ciency, so it can use

any information
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example: translation reranking

Is the stomach empty on you?
Kas sul kõht on tühi? Do you have an empty stomach?

Are you starved?
. . .



-20pt

UNIVERSITY OF

GOTHENBURG

a linear model for a reranker

I let's assume that we have a list of hypotheses H
I for instance, the top 50 parse trees generated by a PCFG

I for each hypothesis h, we can extract some features using the
function f (h)

I we'll implement the reranker by using a scoring function with a
weight vector w

score(w , h) = w · f (h)

I then, for a hypothesis list H, we select the h that maximizes
the scoring function

SELECT(w ,H) = argmax
h∈H

w · f (h)



-20pt

UNIVERSITY OF

GOTHENBURG

adapting the perceptron for reranking

I when training a reranker, our training set T consists of
hypothesis lists for each input

I and for each Hi , we have selected the best output yi

I how can we �nd the weight vector w?

I let's do something similar to the multiclass perceptron:

w = zero vector
repeat N times
for (Hi , yi ) in T
g = SELECT(w ,Hi )
w = w + f (yi )− f (g)

return w
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examples

I parsing example: see Charniak and Johnson: Coarse-to-�ne
n-best parsing and MaxEnt discriminative reranking, ACL
2005.

I MT example: see
http://www.statmt.org/survey/Topic/Reranking

http://www.statmt.org/survey/Topic/Reranking
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going further: task-speci�c learning for dependency parsing

I the multiclass perceptron can be adapted to general prediction
tasks � not just reranking

I let's see how to do dependency parsing in this framework

I let's assume we can extract a feature vector f (x , y) for a
sentence x and a parse tree y

I so we can use a weight vector w to score parse trees

score(w , x , y) = w · f (x , y)

I we also have some procedure PARSE(w , x) that �nds the
top-scoring parse tree y

PARSE(w , x) = argmax
y

w · f (x , y)
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pseudocode: �parsing perceptron�

I we'd like to train the dependency parser: that is, �nd a weight
vector w that scores good parses higher than bad parses

I in this case, our training set T consists of sentences x coupled
with their corresponding gold-standard parse tree y

I how can we �nd the weight vector w?

I almost the same idea as in the reranking perceptron:

w = zero vector
repeat N times
for (xi , yi ) in T
g = PARSE(w , xi )
w = w + f (xi , yi )− f (xi , g)

return w
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graph-based parsing

I so what about the missing pieces?
I what is the feature function f (x , y)?
I how do we �nd the highest-scoring tree? PARSE(w , xi )

I there are many ways they could be implemented; we'll brie�y
go through the famous maximum spanning tree parser
(MSTParser)

I see McDonald, Crammer and Pereira, Online Large-Margin

Training of Dependency Parsers, ACL 2005.

I MSTParser is a special case of a graph-based parser � a
parser where we search for the best tree in a graph
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edge-factored feature representation

<D> Lisa walks home

I MSTParser uses an edge-factored model, where features are
extracted from each edge in a parse tree:

f (x , y) = f edge(x ,<D>→walks)+
+f edge(x ,walks→Lisa)+
+f edge(x ,walks→home)

I the edges are scored independently of each other
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MSTParser: scoring the edges and �nding the best tree

Lisa walks home

<D>

argmax
y

w * f(x, y)

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

x

w
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�nding the maximum spanning tree

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

Lisa walks home

<D>

10

9 9

30

20

30

0

11

3

I the Chu�Liu/Edmonds algorithm:

1. for each node, �nd the top-scoring incoming edge
2. if there are no cycles, we are done
3. if there is a cycle, create a single node containing the cycle
4. �nd the MST in the new graph (recursion)
5. break the cycle...

I also: Eisner algorithm, similar to CKY (see McDonald paper)
I CL/E �nds the highest-scoring tree
I Eisner �nds the highest-scoring projective tree
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discussion

I what do we need to implement a PoS tagger in this way?

I see the classic paper by Collins: Discriminative Training

Methods for Hidden Markov Models: Theory and Experiments

with Perceptron Algorithms, EMNLP 2002



-20pt

UNIVERSITY OF

GOTHENBURG

discussion

I what do we need to implement a PoS tagger in this way?

I see the classic paper by Collins: Discriminative Training

Methods for Hidden Markov Models: Theory and Experiments

with Perceptron Algorithms, EMNLP 2002



-20pt

UNIVERSITY OF

GOTHENBURG

structure-prediction variants of SVM and LR

I what we called the �parsing perceptron� is typically called the
structured perceptron

I as we saw, the parts speci�c to parsing can be replaced
I the feature function: f (x , y)?
I �nding the highest-scoring tree: PARSE(w , xi )

I SVM can be adapted in a very similar way
I multiclass Pegasos can be applied without change

I the counterpart of LR is called conditional random �eld
I it is probably the most popular model for sequence tagging
I not so popular for other problems, since it's a bit more

complicated to implement
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software libraries

I there isn't anything comparable to scikit-learn for structured
prediction

I PyStruct: https://pystruct.github.io
I contains a number of learning algorithms as well as

optimization tools to help implementing the argmax
I designed to be compatible with scikit-learn
I unfortunately, can't yet handle sparse feature vectors. . .

I several specialized libraries, mostly for sequence tagging with
CRF:

I Mallet � a Java library that can be called from NLTK
I CRF++
I CRF-SGD � very e�cient, will be used in the assignment

I seqlearn: http://larsmans.github.io/seqlearn
I implemented by one of the designers of scikit-learn
I only sequence tagging

https://pystruct.github.io
http://larsmans.github.io/seqlearn
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step-by-step or task-speci�c: pros and cons

I step-by-step systems
I are easier to build
I tend to be faster
I are less restrictive about features
I can build on existing ML packages

I task-speci�c models are more accurate for some problems

I for the dependency parsing, there have been some studies
comparing transition-based and graph-based methods from a
linguistic perspective
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example: parser comparison
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multiclass linear classi�ers
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task-speci�c learning

information about assignment 3
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assignment 3

United Nations o�cial Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]

I implement a named entity tagger
I step-by-step sequence tagging approach
I naive training
I compare to an o�-the-shelf CRF
I �le processing and evaluation code will be provided

I for a VG, implement a beam search
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