Machine Learning for NLP Lecture 4: Structured prediction

Richard Johansson

September 21, 2015

overview

multiclass linear classifiers

structured problems: overview

step-by-step structured prediction

task-specific learning

information about assignment 3

two-class (binary) linear classifiers

a linear classifier is a classifier that is defined in terms of a scoring function like this

$$score = w \cdot x$$

- this is a binary (2-class) classifier:
 - return the first class if the score > 0
 - otherwise the second class
- how can we deal with non-binary (multi-class) problems when using linear classifiers?

decomposing multi-class classification problems

- idea 1: break down the complex problem into simpler problems, train a classifier for each
- one-versus-rest ("long jump"):
 - for each class c, make a binary classifier to distinguish c from all other classes
 - ▶ so if there are *n* classes, there are *n* classifiers
 - ▶ at test time, we select the class giving the highest score
- one-versus-one ("football league"):
 - ▶ for each pair of classes c₁ and c₂, make a classifier to distinguish c₁ from c₂
 - ▶ if there are *n* classes, there are $\frac{n \cdot (n-1)}{2}$ classifiers
 - ▶ at test time, we select the class that has most "wins"

example

- assume we're training a function tagger and we have the classes SBJ, OBJ, ADV
- ▶ in one-vs-rest, we train the following three classifiers:
 - ► SBJ vs OBJ+ADV
 - ▶ OBJ vs SBJ+ADV
 - ► ADV vs SBJ+OBJ
- ▶ in one-vs-one, we train the following three:
 - ► SBJ vs OBJ
 - ► SBJ vs ADV
 - ▶ OBJ vs ADV

in scikit-learn

- scikit-learn includes implementations of both of the methods we have discussed:
 - ▶ OneVsRestClassifier
 - ► OneVsOneClassifier
- however, the built-in algorithms (e.g. Perceptron, LinearSVC) will do this automatically for you
 - they use one-versus-rest

multiclass learning algorithms

- ▶ is it good to separate the multiclass task into smaller tasks that are trained independently?
- maybe training should be similar to testing?
- idea 2: make a perceptron where one-vs-rest is used while training

multiclass perceptron

- ▶ in the multiclass perceptron, we make error-driven updates just like in the binary perceptron
- we keep one weight vector w_v for each class y
- assume that we have misclassified an instance x: the true class was y but we guessed g
 - ▶ then we add the features of x to w_y , and subtract from w_g

```
oldsymbol{w}_y = (0,\dots,0) for each class y repeat N times for (x_i,y_i) in the training set \mathcal{T} g = \arg\max_y oldsymbol{w}_y \cdot x_i if g is not equal to y_i oldsymbol{w}_{y_i} = oldsymbol{w}_{y_i} + x_i oldsymbol{w}_g = oldsymbol{w}_g - x_i return w_1,\dots
```


in NumPy/scikit-learn (dense vectors)

```
class MulticlassPerceptron():
   # some initialization...
   def fit(self, X, Y):
        # some initialization...
        self.ws = numpy.zeros( (n_classes, n_features) )
        for i in range(self.n_iter):
            for x, y in XY:
                scores = numpy.dot(self.ws, x)
                guess = scores.argmax()
                if guess != y:
                    self.ws[y] += x
                    self.ws[guess] -= x
```


multiclass LR and SVM

- this idea can also be used when training SVM and LR
- ▶ in the Pegasos paper, the last two rows in the table on page 15 correspond to multiclass SVM and LR, respectively
- notice the similarity of the multiclass SVM update to the multiclass perceptron!
- ▶ in scikit-learn:
 - LinearSVC(multi_class='crammer_singer')
 - LogisticRegression(multi_class='multinomial')

overview

multiclass linear classifiers

structured problems: overview

step-by-step structured prediction

task-specific learning

information about assignment 3

this lecture

- in many NLP tasks, the output is not just a category: it's a complex object
 - sequences, trees, translations, . . .
- structured prediction: for an input x, the set of possible outputs
 - depends on the input x
 - ightharpoonup is very large typically exponential in the size of x
 - consists of many small but interdependent parts
- this type of problem is central in NLP but not so often taught in machine learning courses!
 - ...many of the most important ideas were invented by NLP researchers

example: sequences

- ▶ input: a sequence (for instance, words)
- output: another sequence (for instance, PoS tags)

```
The rain falls hard . DT NN VBZ JJ .
```


example: dependency parse trees

 $s = \langle D \rangle$ Lisa walks home

example: noun phrase coreference

- input: a document, and a list of the noun phrases in the document
- ▶ output: ?

example: temporal structure

- ▶ input: a document, and a list of the events in the document
- ▶ output: ?

two high-level approaches

- step-by-step prediction:
 - break down the complex prediction problem into a sequence of simple decisions
 - train a classifier to select the right decision at each step
 - example: transition-based parsing (Nivre)
- task-specific learning: modify the learning algorithm so that it handles the complex problem directly
 - ▶ for instance, we can make a "parsing perceptron"
 - example: graph-based parsing (McDonald)

overview

multiclass linear classifiers

structured problems: overview

step-by-step structured prediction

task-specific learning

information about assignment 3

step-by-step prediction: general ideas

- break down the problem into a sequence of smaller decisions
 - think of it as a system that gradually consumes input and generates output
 - while doing that, the system has some notion of what it is doing: a state
 - formally: a state machine
- use standard classifiers to guess the next step
 - the classifiers use features from the input and from the state
 - we might need to constrain the classifiers to keep the output consistent

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

The rain falls hard . (START)

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

The rain falls hard . (START) DT

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

The rain falls hard . (START) DT NN

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

The rain falls hard . (START) DT NN VBZ

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

The rain falls hard . (START) DT NN VBZ JJ

- ▶ input: words
- ▶ output: tags
- state: position in sentence; previous outputs

```
The rain falls hard . (START) DT NN VBZ JJ .
```


case study: SVMTool

- we can extract features from the history (the previous decisions), but not from the future
- ► see the paper Fast and Accurate Part-of-Speech Tagging: The SVM Approach Revisited by Giménez and Màrquez (2004)
- note how they use features for the tags to the right
 - "the next tag has the ambiguity class VBZ | NNS"
 - "the next tag might be VBZ"

- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]
```

typical solution: Beginning/Inside/Outside coding

United Nations official Ekeus heads for Baghdad

- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

typical solution: Beginning/Inside/Outside coding

United Nations official Ekeus heads for Baghdad B-ORG

- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG O
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG O B-PER
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG O B-PER O
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG O B-PER O O
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.

[ ORG ] [ PER ] [ LOC ]
```

```
United Nations official Ekeus heads for Baghdad B-ORG I-ORG O B-PER O O B-LOC
```


- input: a sentence
- output: names in the sentence bracketed and labeled

```
United Nations official Ekeus heads for Baghdad.
[ ORG ] [ PER ] [ LOC ]
```

typical solution: Beginning/Inside/Outside coding

```
United Nations official Ekeus heads for Baghdad .

B-ORG I-ORG O B-PER O O B-LOC O
```

see Ratinov and Roth: Design challenges and misconceptions in named entity recognition. CoNLL 2009.

recap: transition-based parsing

- ▶ input: words
- output: dependency edges
- state: stack and queue, and the edges we've output so far

S Q < Then | we | met |

the

cat

discussion: noun phrase coreference

- ▶ the problem:
 - ▶ input: a document and its noun phrases
 - output: (what we discussed before)
- how can we solve the problem in a step-by-step fashion?

discussion: temporal structure

- ▶ the problem:
 - ▶ input: a document and its events
 - output: (what we discussed before)
- how can we solve the problem in a step-by-step fashion?

training step-by-step systems: the basic approach

▶ how can we train the decision classifier in a step-by-step system?

training step-by-step systems: the basic approach

- how can we train the decision classifier in a step-by-step system?
- ▶ the simple approach: learn to imitate an expert
 - force the system to generate the correct output
 - observe the states we pass along the way
 - use them as examples and train the classifier

what happens when we just try to imitate the expert?

image: Ross, Gordon, and Bagnell (2011)

training step-by-step systems: more carefully

- a problem: if we just generate states perfectly, our training set contains no examples of bad states
 - so we don't learn to recover from errors!
- one solution: mix expert-generated states with automatically generated states in the training set
- further reading:
 - http://hunch.net/~12s/
 - SEARN: Daumé III et al: Search-based structured prediction, Machine Learning Journal, 2009.
 - ► DAGGER: Ross et al: A reduction of imitation learning and structured prediction to no-regret online learning, AISTATS 2011.

going beyond greedy decisions

- step-by-step systems tend to be greedy: they select what looks like the best decision at the moment, and can't regret that decision
- beam search can reduce this problem: keep track of the N top-scoring results, not just one
 - ▶ for coding details: see instructions for VG part of assignment
 - example in dependency parsing: Johansson and Nugues Investigating Multilingual Dependency Parsing, CoNLL 2006.
- often improves the the accuracy, but obviously makes the system slower

overview

multiclass linear classifiers

structured problems: overview

step-by-step structured prediction

task-specific learning

information about assignment 3

task-specific learning

- ► the second high-level approach is that we integrate the task (e.g. parsing, tagging) into the learning process
- we adapt our learning methods:
 - ▶ perceptron → structured perceptron
 - SVM → structured SVM
 - ightharpoonup LR ightharpoonup conditional random field

recap: multiclass perceptron

```
m{w} = {\sf zero} \; {\sf vector}
m{repeat} \; N \; {\sf times}
m{for} \; (m{x}_i, y_i) \; {\sf in} \; {\sf the} \; {\sf training} \; {\sf set} \; \mathcal{T}
m{g} = {\sf guess}(m{w}, m{x}_i)
m{if} \; \m{g} \; {\sf is} \; {\sf not} \; {\sf equal} \; {\sf to} \; y_i
{\sf change} \; m{w} \; {\sf to} \; {\sf increase} \; {\sf the} \; {\sf score} \; {\sf of} \; y_i
{\sf change} \; m{w} \; {\sf to} \; {\sf decrease} \; {\sf the} \; {\sf score} \; {\sf of} \; g
m{return} \; m{w}
```


reranking

- assume that we have a simple system that is easy to train and fast to run, but uses a linguistic model that is too simple
 - ▶ for instance, a PCFG parser or an IBM model in translation
 - may have made linguistically problematic assumptions in order to make the system computationally efficient
- how can we build a smarter system on top of the simple one?

reranking

- assume that we have a simple system that is easy to train and fast to run, but uses a linguistic model that is too simple
 - ▶ for instance, a PCFG parser or an IBM model in translation
 - may have made linguistically problematic assumptions in order to make the system computationally efficient
- ▶ how can we build a smarter system on top of the simple one?
- reranking:
 - ▶ let the simplistic system generate *k* hypotheses
 - then use another system to select one of them
 - ► the reranker doesn't have to care about efficiency, so it can use any information

example: translation reranking

Kas sul kõht on tühi?

Is the stomach empty on you?

Do you have an empty stomach?

Are you starved?

. . .

a linear model for a reranker

- ▶ let's assume that we have a list of hypotheses H
 - ▶ for instance, the top 50 parse trees generated by a PCFG
- for each hypothesis h, we can extract some features using the function f(h)
- we'll implement the reranker by using a scoring function with a weight vector w

$$score(\mathbf{w}, h) = \mathbf{w} \cdot \mathbf{f}(h)$$

▶ then, for a hypothesis list *H*, we select the *h* that maximizes the scoring function

$$SELECT(\boldsymbol{w}, H) = \arg\max_{h \in H} \boldsymbol{w} \cdot \boldsymbol{f}(h)$$

adapting the perceptron for reranking

- when training a reranker, our training set T consists of hypothesis lists for each input
 - \triangleright and for each H_i , we have selected the best output y_i
- ▶ how can we find the weight vector w?

adapting the perceptron for reranking

- when training a reranker, our training set T consists of hypothesis lists for each input
 - \triangleright and for each H_i , we have selected the best output y_i
- ▶ how can we find the weight vector w?
- ▶ let's do something similar to the multiclass perceptron:

```
w = \text{zero vector}

repeat N times

for (H_i, y_i) in \mathcal{T}

g = \text{SELECT}(w, H_i)

w = w + f(y_i) - f(g)

return w
```

examples

- parsing example: see Charniak and Johnson: Coarse-to-fine n-best parsing and MaxEnt discriminative reranking, ACL 2005.
- MT example: see http://www.statmt.org/survey/Topic/Reranking

going further: task-specific learning for dependency parsing

- the multiclass perceptron can be adapted to general prediction tasks – not just reranking
- ▶ let's see how to do dependency parsing in this framework

going further: task-specific learning for dependency parsing

- the multiclass perceptron can be adapted to general prediction tasks – not just reranking
- ▶ let's see how to do dependency parsing in this framework
- let's assume we can extract a feature vector f(x, y) for a sentence x and a parse tree y
 - lacktriangle so we can use a weight vector $oldsymbol{w}$ to score parse trees

$$score(\boldsymbol{w}, x, y) = \boldsymbol{w} \cdot \boldsymbol{f}(x, y)$$

we also have some procedure PARSE(w, x) that finds the top-scoring parse tree y

$$\mathsf{PARSE}(\boldsymbol{w},x) = \arg\max_{y} \boldsymbol{w} \cdot \boldsymbol{f}(x,y)$$

pseudocode: "parsing perceptron"

- we'd like to train the dependency parser: that is, find a weight vector w that scores good parses higher than bad parses
- ▶ in this case, our training set \mathcal{T} consists of sentences x coupled with their corresponding gold-standard parse tree y
- \blacktriangleright how can we find the weight vector \mathbf{w} ?

pseudocode: "parsing perceptron"

- we'd like to train the dependency parser: that is, find a weight vector w that scores good parses higher than bad parses
- ▶ in this case, our training set \mathcal{T} consists of sentences x coupled with their corresponding gold-standard parse tree y
- ▶ how can we find the weight vector w?
- almost the same idea as in the reranking perceptron:

```
w = \text{zero vector}

repeat N times

for (x_i, y_i) in \mathcal{T}

g = \text{PARSE}(w, x_i)

w = w + f(x_i, y_i) - f(x_i, g)

return w
```


graph-based parsing

- so what about the missing pieces?
 - what is the feature function f(x,y)?
 - ▶ how do we find the highest-scoring tree? PARSE(\boldsymbol{w}, x_i)
- there are many ways they could be implemented; we'll briefly go through the famous maximum spanning tree parser (MSTParser)
 - see McDonald, Crammer and Pereira, Online Large-Margin Training of Dependency Parsers, ACL 2005.
- MSTParser is a special case of a graph-based parser a parser where we search for the best tree in a graph

edge-factored feature representation

MSTParser uses an edge-factored model, where features are extracted from each edge in a parse tree:

$$f(x, y) = f_{edge}(x, \rightarrow walks) + f_{edge}(x, walks \rightarrow Lisa) + f_{edge}(x, walks \rightarrow home)$$

the edges are scored independently of each other

MSTParser: scoring the edges and finding the best tree

finding the maximum spanning tree

- the Chu-Liu/Edmonds algorithm:
 - 1. for each node, find the top-scoring incoming edge
 - 2. if there are no cycles, we are done
 - 3. if there is a cycle, create a single node containing the cycle
 - 4. find the MST in the new graph (recursion)
 - 5. break the cycle...
- ► also: Eisner algorithm, similar to CKY (see McDonald paper)
 - CL/E finds the highest-scoring tree
 - Eisner finds the highest-scoring projective tree

discussion

▶ what do we need to implement a PoS tagger in this way?

discussion

- what do we need to implement a PoS tagger in this way?
- see the classic paper by Collins: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms, EMNLP 2002

structure-prediction variants of SVM and LR

- what we called the "parsing perceptron" is typically called the structured perceptron
 - as we saw, the parts specific to parsing can be replaced
 - the feature function: f(x,y)?
 - finding the highest-scoring tree: PARSE(\boldsymbol{w}, x_i)
- SVM can be adapted in a very similar way
 - multiclass Pegasos can be applied without change
- the counterpart of LR is called conditional random field
 - it is probably the most popular model for sequence tagging
 - not so popular for other problems, since it's a bit more complicated to implement

software libraries

- there isn't anything comparable to scikit-learn for structured prediction
- PyStruct: https://pystruct.github.io
 - contains a number of learning algorithms as well as optimization tools to help implementing the arg max
 - designed to be compatible with scikit-learn
 - unfortunately, can't yet handle sparse feature vectors...
- several specialized libraries, mostly for sequence tagging with CRF:
 - Mallet a Java library that can be called from NLTK
 - ► CRF++
 - CRF-SGD very efficient, will be used in the assignment
- seqlearn: http://larsmans.github.io/seqlearn
 - implemented by one of the designers of scikit-learn
 - only sequence tagging

step-by-step or task-specific: pros and cons

- step-by-step systems
 - are easier to build
 - tend to be faster
 - are less restrictive about features
 - can build on existing ML packages
- task-specific models are more accurate for some problems
- for the dependency parsing, there have been some studies comparing transition-based and graph-based methods from a linguistic perspective

example: parser comparison

Sammanställning parsrar

parser	korrekthet	länkkorrekthet 🛦	tid/mening	kommentar
LTH	82.43	88.58	0.193	2-ordning, pseudoprojektiv, Brown-kluster
Mate-tools	81.65	87.93	0.141	ickeprojektiv, Brown-kluster
TurboParser	79.91	87.31	0.053	
ZPar	80.78	87.26	0.190	projektiv
MSTParser	78.14	86.32	0.119	2-ordning, ickeprojektiv
MaltParser	78.42	85.17	0.005	ickeprojektiv, Brown-kluster, tränad enligt instruktioner av Johan Hall
Huang	-	84.74	0.017	projektiv, inga funktioner

overview

multiclass linear classifiers

structured problems: overview

step-by-step structured prediction

task-specific learning

information about assignment 3

assignment 3

United Nations official Ekeus heads for Baghdad.

[ORG] [PER] [LOC]

- implement a named entity tagger
 - step-by-step sequence tagging approach
 - naive training
 - compare to an off-the-shelf CRF
 - file processing and evaluation code will be provided
- for a VG, implement a beam search

