
Machine Learning for NLP
Lecture 5 part 2: Learning rules

UNIVERSITY OF

GOTHENBURG

Richard Johansson

October 1, 2015



-20pt

UNIVERSITY OF

GOTHENBURG

classi�ers as rule systems

I assume that we're building a function tagger by hand

I how would it look?

I probably, you would start writing rules like this:
I IF the current node is an NP, THEN

I IF its parent is an S, THEN return the function tag SBJ
I IF its parent is a VP, THEN return the function tag OBJ
I . . .

I a human would construct such a rule system by trial and error

I could this kind of rule system be learned automatically?



-20pt

UNIVERSITY OF

GOTHENBURG

learning rules

I so far, the learning algorithms we have seen have been
di�erent variations of the idea of scoring features

I tends to work well, but it might not be the most intuitive way
of viewing the task of learning

I rule learning algorithms produce results that are interpretable
and editable

I but perhaps not as mathematically well-understood as the
linear classi�ers



-20pt

UNIVERSITY OF

GOTHENBURG

rule learning algorithms: examples

I learning decision trees for classi�cation
I the next slides

I learning transformation rules for e.g. tagging
I the Brill tagger in NLTK
I see also Torbjörn's course,

http://www.ling.gu.se/~lager/Mutbl/course/index.html

I inductive logic programming

I Markov Logic

I . . .

http://www.ling.gu.se/~lager/Mutbl/course/index.html


-20pt

UNIVERSITY OF

GOTHENBURG

decision tree classi�ers

I a decision tree is a tree where
I the internal nodes represent how we choose based on a feature
I the leaves represent the return value of the classi�er

I like the example we had previously:
I IF the current node is an NP, THEN

I IF its parent is an S, THEN return the function tag SBJ
I IF its parent is a VP, THEN return the function tag OBJ
I . . .



-20pt

UNIVERSITY OF

GOTHENBURG

general idea for learning a tree

I Occam's razor intuition: we'd like a small tree

I also, it should make few errors on the training set

I however, �nding the smallest tree is a complex computational
problem

I it is NP-hard

I instead, we'll look at an algorithm that works top-down by

selecting the �most useful feature�

I the basic approach is called the ID3 algorithm
I see e.g. Daumé III's book or

http://en.wikipedia.org/wiki/ID3_algorithm

http://en.wikipedia.org/wiki/ID3_algorithm


-20pt

UNIVERSITY OF

GOTHENBURG

greedy decision tree learning (pseudocode)

def TrainDecisionTree(T )

if T is unambiguous

return the class of the examples in T

if T has no features

return a leaf with the majority class of T

F ← the �most useful feature� in T

for each possible value fi of F

Ti ← the subset of T where F = fi

remove F from Ti

treei ← TrainDecisionTree(Ti )

return a tree node that splits on F ,

where fi is connected to the subtree treei



-20pt

UNIVERSITY OF

GOTHENBURG

how to select the �most useful feature�?

I there are many rules of thumb to select the most useful
feature

I idea: a feature is good if the subsets Ti are unambiguous

I in Daumé III's book, he uses a simple score to rank the
features:

I for each subset Ti , compute the frequency of its majority class
I sum the majority class frequencies

I however, the most well-known ranking measure is the
information gain

I this measures the reduction of entropy (statistical uncertainty)
we get by considering the feature



-20pt

UNIVERSITY OF

GOTHENBURG

problems with the naive approach

I ID3 and similar decision tree learning algorithms often have

troubles with large, noisy datasets

I often, performance decreases with training set size!

I can be improved by using a separate development set:
I prune the tree by removing the nodes that don't seem to

matter for accuracy on the development set



-20pt

UNIVERSITY OF

GOTHENBURG

implementations: a small sample

I C4.5, C5: https://www.rulequest.com/see5-info.html

I DecisionTreeClassifier in NLTK

I DecisionTreeClassifier in scikit-learn

I NLTK's decision trees are more interpretable, since they work

with symbolic features directly instead of numerical vectors

https://www.rulequest.com/see5-info.html

