
Machine Learning for NLP

Lecture 6: Kernel-based classi�ers

UNIVERSITY OF

GOTHENBURG

Richard Johansson

October 5, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

overview

I kernels give us an interesting connection between linear and
example-based classi�ers

I a linear classi�er computes a score for each feature, and then

sums the scores
I an example-based classi�er uses a similarity function to

compare a new instance to the training examples
I informally, kernels are similarity functions; formally, they are

dot products in some transformed vector space

I we start from the linear classi�ers and show that many of them

have an alternative example-based form

I the selling point: get rid of feature engineering, use a similarity

function instead

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the primal and dual forms

mapping feature vectors into higher-dimensional spaces

kernels in classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

the primal and dual forms of a linear classi�er

I the primal form of a linear classi�er is the one that we have

seen so far, where the classi�er is de�ned in terms of features:

score(x) = w · x

I in the dual form, we instead state the scoring function in

terms of the training examples X = x1, . . . , xn:

score(x) =
∑
i

αi · (x i · x)

where αi is an importance weight for the training example x i

-20pt

UNIVERSITY OF

GOTHENBURG

the primal and dual forms: re�ection

primal dual

score(x) = w · x score(x) =
∑
i

αi · (x i · x)

I the dual form can be seen as some sort of example-based

classi�er

I why do we say that the primal and the dual are related?
I can we go from the dual to the primal?

w =
∑

i

αi · x i

I it's not obvious that we could make the opposite conversion. . .

-20pt

UNIVERSITY OF

GOTHENBURG

the primal and dual forms: re�ection

primal dual

score(x) = w · x score(x) =
∑
i

αi · (x i · x)

I the dual form can be seen as some sort of example-based

classi�er

I why do we say that the primal and the dual are related?
I can we go from the dual to the primal?

w =
∑

i

αi · x i

I it's not obvious that we could make the opposite conversion. . .

-20pt

UNIVERSITY OF

GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:

primal: w = (0, . . . , 0)
dual: ?

for (x i , yi) in the training set (X ,Y)
if yi is positive and score(x i) <= 0

add x i to the classi�er

primal: w = w + x i

dual: ?

else if yi is negative and score(x i) >= 0

subtract x i from the classi�er

primal: w = w − x i

dual: ?

return the classi�er

-20pt

UNIVERSITY OF

GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:

primal: w = (0, . . . , 0)
dual: α = (0, . . . , 0)

for (x i , yi) in the training set (X ,Y)
if yi is positive and score(x i) <= 0

add x i to the classi�er

primal: w = w + x i

dual: ?

else if yi is negative and score(x i) >= 0

subtract x i from the classi�er

primal: w = w − x i

dual: ?

return the classi�er

-20pt

UNIVERSITY OF

GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:

primal: w = (0, . . . , 0)
dual: α = (0, . . . , 0)

for (x i , yi) in the training set (X ,Y)
if yi is positive and score(x i) <= 0

add x i to the classi�er

primal: w = w + x i

dual: αi = αi + 1

else if yi is negative and score(x i) >= 0

subtract x i from the classi�er

primal: w = w − x i

dual: αi = αi − 1

return the classi�er

-20pt

UNIVERSITY OF

GOTHENBURG

what about the SVM?

I recall that the SVM can be de�ned in terms of a few support

vectors

I this shows how the classi�er is determined by the examples

I for the support examples, the α's are non-zero

-20pt

UNIVERSITY OF

GOTHENBURG

the representer theorem

I the representer theorem shows that
I if the learning method is stated as a minimization of

objective(w) = regularizer(w) + loss(w)

I then the solution can be written in the dual form:

w =
∑

i

αi · x i

I this class of learning methods includes SVM and LR

I Schölkopf, Herbrich, and Smola (2001): A generalized

representer theorem

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the primal and dual forms

mapping feature vectors into higher-dimensional spaces

kernels in classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

recap: linear separability

I some datasets can't be modeled with a linear classi�er!

I a dataset is linearly separable if there exists a w that gives

us perfect classi�cation

-20pt

UNIVERSITY OF

GOTHENBURG

a simple example of linear inseparability: an �XOR� situation

very good Positive

very bad Negative

not good Negative

not bad Positive

-20pt

UNIVERSITY OF

GOTHENBURG

mapping into a larger vector space

I we may add �useful combinations� of features to make the

dataset separable:

very good very-good Positive

very bad very-bad Negative

not good not-good Negative

not bad not-bad Positive

I from a geometrical viewpoint: we are creating a feature space

with a higher dimensionality:

I lots of features → LOTS of combinations

-20pt

UNIVERSITY OF

GOTHENBURG

mapping into a new vector space: formally

I we have some function φ that will take a feature vector x and
convert it into a higher-dimensional vector φ(x)

I typically by forming combinations of the parts of x

I then, instead of training a classi�er on X = x1, . . . , xn, we

train it on φ(X) = φ(x1), . . . , φ(xn)

I it seems like a problem that φ would give a vector with a huge

dimensionality, but we'll show later that we don't need to

compute φ explicitly

-20pt

UNIVERSITY OF

GOTHENBURG

example: XOR dataset

X = numpy.array([[1, 1],

[1, 0],

[0, 1],

[0, 0]])

Y = ['no', 'yes', 'yes', 'no']

clf = LinearSVC()

clf.fit(X, Y)

linear inseparability, so we get less than 100% accuracy

print(accuracy_score(Y, clf.predict(X)))

-20pt

UNIVERSITY OF

GOTHENBURG

example: XOR dataset converted into 3 dimensions

I let's apply the function

φ([x1, x2]) = [x12, x22,
√
2 · x1 · x2]

X = numpy.array([[1, 1, sqrt(2)*1*1],

[1, 0, sqrt(2)*1*0],

[0, 1, sqrt(2)*0*1],

[0, 0, sqrt(2)*0*0]])

Y = ['no', 'yes', 'yes', 'no']

clf = LinearSVC()

clf.fit(X, Y)

in the 3-dimensional space, we get 100% accuracy

print(accuracy_score(Y, clf.predict(X)))

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the primal and dual forms

mapping feature vectors into higher-dimensional spaces

kernels in classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

I let's combine the two ideas we've been discussing:
I converting examples x into higher-dimensional vectors φ(x)
I using the dual form of the classi�ers

I then we get:

score(x) =
∑
i

αi · (φ(x i) · φ(x))

I we mentioned previously that it seems like a problem that

φ(x) is huge. . .

-20pt

UNIVERSITY OF

GOTHENBURG

the �kernel trick�

I in the dual form, the feature vectors φ(x)1, . . . , φ(x)n are used

in dot products only:

score(x) =
∑
i

αi · (φ(x)i · φ(x))

I a kernel K is a function that corresponds to a dot product in

some transformed vector space

score(x) =
∑
i

αi · K (x i , x)

I the �kernel trick�: in some cases, we may compute the kernel

without actually computing φ

-20pt

UNIVERSITY OF

GOTHENBURG

example: quadratic kernel

I recall the previous example, where we had

φ([x1, x2]) = [x21 , x
2

2 ,
√
2 · x1 · x2]

I in this case, we can compute the high-dimensional dot product

without actually making the high-dimensional vectors:

K (a,b) = φ(a) · φ(b) = (a · b)2

I this is called a quadratic kernel

-20pt

UNIVERSITY OF

GOTHENBURG

quadratic kernel: derivation

φ([a1, a2]) · φ([b1, b2]) = [a2
1
, a2

2
,
√
2a1a2] · [b21, b22,

√
2b1b2] =

= a2
1
b2
1
+ a2

2
b2
2
+ 2a1a2b1b2 =

= (a1b1 + a2b2)
2 =

= ([a1, a2] · [b1, b2])2

-20pt

UNIVERSITY OF

GOTHENBURG

some common kernels

I many of the commonly used kernels are just some nonlinear

function applied to the normal dot product

I polynomial kernel: K (a,b) = (a · b + c0)
d

I . . . where d is called the degree and c0 the o�set
I this category includes the linear and quadratic kernels
I in general, a polynomial kernel with degree d will implicitly

form all combinations of d features

I RBF kernel: K (a,b) = exp(−γ · |a − b|2)

-20pt

UNIVERSITY OF

GOTHENBURG

kernel SVM in scikit-learn

I the classi�er sklearn.svm.SVC is an SVM implementation

that uses kernels, as opposed to LinearSVC that we saw before

I examples:
I quadratic: SVC(kernel='poly', degree=2)
I RBF: SVC(kernel='rbf')

I you can also use your own kernel, instead of one of the built-in
I SVC(kernel=my_kernel_function)

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

-20pt

UNIVERSITY OF

GOTHENBURG

example: XOR dataset with quadratic-kernel SVM

X = numpy.array([[1, 1],

[1, 0],

[0, 1],

[0, 0]])

Y = ['no', 'yes', 'yes', 'no']

clf = SVC(kernel='poly', degree=2, C=1000)

clf.fit(X, Y)

we get 100% accuracy because the quadratic kernel

implicitly works in the 3-dimensional space

print(accuracy_score(Y, clf.predict(X)))

-20pt

UNIVERSITY OF

GOTHENBURG

decision boundaries: linear and quadratic SVM

I a kernel-based classi�er is linear in the high-dimensional space,

but non-linear in the original space

I example: linear SVM compared to SVM with quadratic kernel

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

-20pt

UNIVERSITY OF

GOTHENBURG

kernels as similarity functions

I by using a kernel, we got rid of the feature transformation φ

I we can dispose of the feature extraction step as well!

I in that case, the kernel function K (a,b) becomes a similarity

function between two objects a and b

I some interesting kernels useful in NLP:
I string kernels: how many substrings do the two strings have

in common?
I tree kernels: how many subtrees do the two trees have in

common?
I many papers by Moschitti on this topic

I graph kernels
I lexicon-based similarity functions, for instance with

WordNet

-20pt

UNIVERSITY OF

GOTHENBURG

kernels in practice

I as we discussed, a kernel-based classi�er can be seen as an
example-based classifer

I so they share the weakness of being slow at test time
I as the training set grows, the classi�er becomes slower. . .

I when should we use a kernel?
I when de�ning a similarity function is easier than coming up

with features
I or when we think the features interact in some complicated way

I the alternative: extract features as normal, try to use your

intuition and form feature combinations manually or by trial

and error

	the primal and dual forms
	mapping feature vectors into higher-dimensional spaces
	kernels in classifiers

