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overview

» kernels give us an interesting connection between linear and
example-based classifiers
» a linear classifier computes a score for each feature, and then
sums the scores
» an example-based classifier uses a similarity function to
compare a new instance to the training examples
» informally, kernels are similarity functions; formally, they are
dot products in some transformed vector space
» we start from the linear classifiers and show that many of them
have an alternative example-based form

» the selling point: get rid of feature engineering, use a similarity
function instead
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overview

the primal and dual forms
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the primal and dual forms of a linear classifier

» the primal form of a linear classifier is the one that we have
seen so far, where the classifier is defined in terms of features:

score(x) = w - x

» in the dual form, we instead state the scoring function in
terms of the training examples X = x1,...,x,:

score(x) = Zai - (xi - x)

where «; is an importance weight for the training example x;

UNIVERSITY OF
GOTHENBURG



the primal and dual forms: reflection

primal dual
score(x) = w - x score(x) = Za,— < (xj - x)
i

» the dual form can be seen as some sort of example-based
classifier

» why do we say that the primal and the dual are related?
» can we go from the dual to the primal?
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the primal and dual forms: reflection

primal dual
score(x) = w - x score(x) = Za,— < (xj - x)
i

» the dual form can be seen as some sort of example-based
classifier

» why do we say that the primal and the dual are related?
» can we go from the dual to the primal?

w = E Qj - Xj
i

» it's not obvious that we could make the opposite conversion. ..
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perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: ?
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: ?
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: ?
return the classifier

UNIVERSITY OF
GOTHENBURG



perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: a=(0,...,0)
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: ?
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: ?
return the classifier

UNIVERSITY OF
GOTHENBURG



perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: a=(0,...,0)
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: a; =a; +1
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: a; = ;-1
return the classifier
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what about the SVM?

» recall that the SVM can be defined in terms of a few support
vectors

» this shows how the classifier is determined by the examples

» for the support examples, the a's are non-zero
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the representer theorem

» the representer theorem shows that
» if the learning method is stated as a minimization of

objective(w) = regularizer(w) + loss(w)

» then the solution can be written in the dual form:
w = Z Q- Xj
i

» this class of learning methods includes SVM and LR

» Scholkopf, Herbrich, and Smola (2001): A generalized
representer theorem
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overview

mapping feature vectors into higher-dimensional spaces
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recap: linear separability

» some datasets can’t be modeled with a linear classifier!

> a dataset is linearly separable if there exists a w that gives
us perfect classification
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a simple example of linear inseparability: an “XOR" situation

very good  Positive
very bad  Negative
not good Negative

not bad  Positive
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mapping into a larger vector space

» we may add “useful combinations” of features to make the

dataset separable:

very good very-good  Positive
very bad very-bad  Negative
not good not-good  Negative
Positive

not bad not-bad
» from a geometrical viewpoint: we are creating a feature space

with a higher dimensionality:

> lots of features — LOTS of combinations
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mapping into a new vector space: formally

» we have some function ¢ that will take a feature vector x and
convert it into a higher-dimensional vector ¢(x)

» typically by forming combinations of the parts of x
» then, instead of training a classifier on X = x1,...,x,, we
train it on ¢(X) = ¢(x1),...,0(xn)
> it seems like a problem that ¢ would give a vector with a huge
dimensionality, but we'll show later that we don’t need to
compute ¢ explicitly
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example: XOR dataset

X = numpy.array([[1, 1],
[1, o1,
(o, 11,
fo, 011)

Y [’no’, ’yes’, ’yes’, ’no’]

clf = LinearSVC()
clf.fit(X, Y)

# linear inseparability, so we get less than 1007 accuracy
print (accuracy_score(Y, clf.predict(X)))
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example: XOR dataset converted into 3 dimensions

> let’s apply the function
o([x1,x2]) = [x12,x22,v/2 - x1 - x2]

X = numpy.array([[1, 1, sqrt(2)*1x*1],
[1, 0, sqrt(2)*1*0],
[0, 1, sqrt(2)*0x*1],
[0, 0, sqrt(2)*0*0]1])
[>no’, ’yes’, ’yes’, ’no’]

Y

clf = LinearSVC()
clf.fit(X, Y)

# in the 3-dimensional space, we get 100% accuracy
print (accuracy_score(Y, clf.predict(X)))
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overview

kernels in classifiers
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> let's combine the two ideas we've been discussing:

» converting examples x into higher-dimensional vectors ¢(x)
» using the dual form of the classifiers

> then we get:
score(x) = Z a;i - (p(xi) - (x))

» we mentioned previously that it seems like a problem that
o(x) is huge. ..
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the “kernel trick”

» in the dual form, the feature vectors ¢(x)1, ..., »(x), are used
in dot products only:

score(x Z a;j - (o(x)i - o(x))

» a kernel K is a function that corresponds to a dot product in
some transformed vector space

score(x E a;j - K(xi, x)

> the “kernel trick”: in some cases, we may compute the kernel
without actually computing ¢
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example: quadratic kernel

» recall the previous example, where we had
¢([X17X2]) - [X127X22> \/5 © X1 X2]

> in this case, we can compute the high-dimensional dot product
without actually making the high-dimensional vectors:

K(a,b) = ¢(a) - ¢(b) = (a- by’

» this is called a quadratic kernel
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quadratic kernel: derivation

(15([31, 32]) : ¢([b1a b2]) = [a%’ag’ \/53132] : [b%a b%, \/§b1b2] =
= a%bf + agbg +2ajasbi by =
= (albl + 32b2)2 =

= ([a1, a2] - [b1, ba])?
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some common kernels

» many of the commonly used kernels are just some nonlinear
function applied to the normal dot product
» polynomial kernel: K(a,b) = (a- b+ c)?
» ...where d is called the degree and ¢y the offset
» this category includes the linear and quadratic kernels
» in general, a polynomial kernel with degree d will implicitly
form all combinations of d features

» RBF kernel: K(a,b) = exp(—~-|a — b|?)
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kernel SVM in scikit-learn

» the classifier sklearn.svm.SVC is an SVM implementation
that uses kernels, as opposed to LinearSVC that we saw before
» examples:
» quadratic: SVC(kernel=’poly’, degree=2)
» RBF: SVC(kernel="rbf’)

> you can also use your own kernel, instead of one of the built-in

» SVC(kernel=my_kernel_function)
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http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

example: XOR dataset with quadratic-kernel SVM

X = numpy.array([[1, 1],
[1, o],
(o, 11,
o, 01

Y [’no’, ’yes’, ’yes’, ’no’]

clf = SVC(kernel=’poly’, degree=2, C=1000)
clf.fit (X, Y)

# we get 100% accuracy because the quadratic kernel
# implicitly works in the 3-dimensional space

print (accuracy_score(Y, clf.predict(X)))
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decision boundaries: linear and quadratic SVM

> a kernel-based classifier is linear in the high-dimensional space,
but non-linear in the original space

» example: linear SVM compared to SVM with quadratic kernel

100 X [}

-05
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kernels as similarity functions

v

by using a kernel, we got rid of the feature transformation ¢

v

we can dispose of the feature extraction step as well!

in that case, the kernel function K(a, b) becomes a similarity
function between two objects a and b

v

> some interesting kernels useful in NLP:

» string kernels: how many substrings do the two strings have
in common?

» tree kernels: how many subtrees do the two trees have in
common’?

> many papers by Moschitti on this topic

» graph kernels

» lexicon-based similarity functions, for instance with
WordNet
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kernels in practice

» as we discussed, a kernel-based classifier can be seen as an
example-based classifer
» so they share the weakness of being slow at test time
» as the training set grows, the classifier becomes slower. ..
» when should we use a kernel?
» when defining a similarity function is easier than coming up
with features
» or when we think the features interact in some complicated way
» the alternative: extract features as normal, try to use your
intuition and form feature combinations manually or by trial
and error
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