Machine Learning for NLP
Lecture 6: Kernel-based classifiers

UNIVI ITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

October 5, 2015

overview

» kernels give us an interesting connection between linear and
example-based classifiers
» a linear classifier computes a score for each feature, and then
sums the scores
» an example-based classifier uses a similarity function to
compare a new instance to the training examples
» informally, kernels are similarity functions; formally, they are
dot products in some transformed vector space
» we start from the linear classifiers and show that many of them
have an alternative example-based form

» the selling point: get rid of feature engineering, use a similarity
function instead

UNIVERSITY OF
GOTHENBURG

overview

the primal and dual forms

UNIVERSITY OF
GOTHENBURG

the primal and dual forms of a linear classifier

» the primal form of a linear classifier is the one that we have
seen so far, where the classifier is defined in terms of features:

score(x) = w - x

» in the dual form, we instead state the scoring function in
terms of the training examples X = x1,...,x,:

score(x) = Zai - (xi - x)

where «; is an importance weight for the training example x;

UNIVERSITY OF
GOTHENBURG

the primal and dual forms: reflection

primal dual
score(x) = w - x score(x) = Za,— < (xj - x)
i

» the dual form can be seen as some sort of example-based
classifier

» why do we say that the primal and the dual are related?
» can we go from the dual to the primal?

UNIVERSITY OF
GOTHENBURG

the primal and dual forms: reflection

primal dual
score(x) = w - x score(x) = Za,— < (xj - x)
i

» the dual form can be seen as some sort of example-based
classifier

» why do we say that the primal and the dual are related?
» can we go from the dual to the primal?

w = E Qj - Xj
i

» it's not obvious that we could make the opposite conversion. ..

UNIVERSITY OF
GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: ?
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: ?
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: ?
return the classifier

UNIVERSITY OF
GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: a=(0,...,0)
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: ?
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: ?
return the classifier

UNIVERSITY OF
GOTHENBURG

perceptron in the primal and dual forms

initialize to all zeros:
primal: w = (0,...,0)
dual: a=(0,...,0)
for (x;,y;) in the training set (X, Y)
if y; is positive and score(x;) <=0
add x; to the classifier
primal: w = w + x;
dual: a; =a; +1
else if y; is negative and score(x;) >= 0
subtract x; from the classifier
primal: w = w — Xx;
dual: a; = ;-1
return the classifier

UNIVERSITY OF
GOTHENBURG

what about the SVM?

» recall that the SVM can be defined in terms of a few support
vectors

» this shows how the classifier is determined by the examples

» for the support examples, the a's are non-zero

UNIVERSITY OF
GOTHENBURG

the representer theorem

» the representer theorem shows that
» if the learning method is stated as a minimization of

objective(w) = regularizer(w) + loss(w)

» then the solution can be written in the dual form:
w = Z Q- Xj
i

» this class of learning methods includes SVM and LR

» Scholkopf, Herbrich, and Smola (2001): A generalized
representer theorem

UNIVERSITY OF
GOTHENBURG

overview

mapping feature vectors into higher-dimensional spaces

UNIVERSITY OF
GOTHENBURG

recap: linear separability

» some datasets can’t be modeled with a linear classifier!

> a dataset is linearly separable if there exists a w that gives
us perfect classification

UNIVERSITY OF
GOTHENBURG

a simple example of linear inseparability: an “XOR" situation

very good Positive
very bad Negative
not good Negative

not bad Positive

E unwersiTy oF
S8 GOTHENBURG

mapping into a larger vector space

» we may add “useful combinations” of features to make the

dataset separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
Positive

not bad not-bad
» from a geometrical viewpoint: we are creating a feature space

with a higher dimensionality:

> lots of features — LOTS of combinations

UNIVERSITY OF
GOTHENBURG

mapping into a new vector space: formally

» we have some function ¢ that will take a feature vector x and
convert it into a higher-dimensional vector ¢(x)

» typically by forming combinations of the parts of x
» then, instead of training a classifier on X = x1,...,x,, we
train it on ¢(X) = ¢(x1),...,0(xn)
> it seems like a problem that ¢ would give a vector with a huge
dimensionality, but we'll show later that we don’t need to
compute ¢ explicitly

UNIVERSITY OF
GOTHENBURG

example: XOR dataset

X = numpy.array([[1, 1],
[1, o1,
(o, 11,
fo, 011)

Y [’no’, ’yes’, ’yes’, ’no’]

clf = LinearSVC()
clf.fit(X, Y)

linear inseparability, so we get less than 1007 accuracy
print (accuracy_score(Y, clf.predict(X)))

UNIVERSITY OF
GOTHENBURG

example: XOR dataset converted into 3 dimensions

> let’s apply the function
o([x1,x2]) = [x12,x22,v/2 - x1 - x2]

X = numpy.array([[1, 1, sqrt(2)*1x*1],
[1, 0, sqrt(2)*1*0],
[0, 1, sqrt(2)*0x*1],
[0, 0, sqrt(2)*0*0]1])
[>no’, ’yes’, ’yes’, ’no’]

Y

clf = LinearSVC()
clf.fit(X, Y)

in the 3-dimensional space, we get 100% accuracy
print (accuracy_score(Y, clf.predict(X)))

UNIVERSITY OF
GOTHENBURG

overview

kernels in classifiers

UNIVERSITY OF
GOTHENBURG

> let's combine the two ideas we've been discussing:

» converting examples x into higher-dimensional vectors ¢(x)
» using the dual form of the classifiers

> then we get:
score(x) = Z a;i - (p(xi) - (x))

» we mentioned previously that it seems like a problem that
o(x) is huge. ..

UNIVERSITY OF
GOTHENBURG

the “kernel trick”

» in the dual form, the feature vectors ¢(x)1, ..., »(x), are used
in dot products only:

score(x Z a;j - (o(x)i - o(x))

» a kernel K is a function that corresponds to a dot product in
some transformed vector space

score(x E a;j - K(xi, x)

> the “kernel trick”: in some cases, we may compute the kernel
without actually computing ¢

UNIVERSITY OF
GOTHENBURG

example: quadratic kernel

» recall the previous example, where we had
¢([X17X2]) - [X127X22> \/5 © X1 X2]

> in this case, we can compute the high-dimensional dot product
without actually making the high-dimensional vectors:

K(a,b) = ¢(a) - ¢(b) = (a- by’

» this is called a quadratic kernel

UNIVERSITY OF
GOTHENBURG

quadratic kernel: derivation

(15([31, 32]) : ¢([b1a b2]) = [a%’ag’ \/53132] : [b%a b%, \/§b1b2] =
= a%bf + agbg +2ajasbi by =
= (albl + 32b2)2 =

= ([a1, a2] - [b1, ba])?

CQ unversiTY oF
S GOTHENBURG

some common kernels

» many of the commonly used kernels are just some nonlinear
function applied to the normal dot product
» polynomial kernel: K(a,b) = (a- b+ c)?
» ...where d is called the degree and ¢y the offset
» this category includes the linear and quadratic kernels
» in general, a polynomial kernel with degree d will implicitly
form all combinations of d features

» RBF kernel: K(a,b) = exp(—~-|a — b|?)

UNIVERSITY OF
GOTHENBURG

kernel SVM in scikit-learn

» the classifier sklearn.svm.SVC is an SVM implementation
that uses kernels, as opposed to LinearSVC that we saw before
» examples:
» quadratic: SVC(kernel=’poly’, degree=2)
» RBF: SVC(kernel="rbf’)

> you can also use your own kernel, instead of one of the built-in

» SVC(kernel=my_kernel_function)

UNIVERSITY OF
GOTHENBURG

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

example: XOR dataset with quadratic-kernel SVM

X = numpy.array([[1, 1],
[1, o],
(o, 11,
o, 01

Y [’no’, ’yes’, ’yes’, ’no’]

clf = SVC(kernel=’poly’, degree=2, C=1000)
clf.fit (X, Y)

we get 100% accuracy because the quadratic kernel
implicitly works in the 3-dimensional space

print (accuracy_score(Y, clf.predict(X)))

E unwersiTy oF
S8 GOTHENBURG

decision boundaries: linear and quadratic SVM

> a kernel-based classifier is linear in the high-dimensional space,
but non-linear in the original space

» example: linear SVM compared to SVM with quadratic kernel

100 X [}

-05

UNIVERSITY OF
GOTHENBURG

kernels as similarity functions

v

by using a kernel, we got rid of the feature transformation ¢

v

we can dispose of the feature extraction step as well!

in that case, the kernel function K(a, b) becomes a similarity
function between two objects a and b

v

> some interesting kernels useful in NLP:

» string kernels: how many substrings do the two strings have
in common?

» tree kernels: how many subtrees do the two trees have in
common’?

> many papers by Moschitti on this topic

» graph kernels

» lexicon-based similarity functions, for instance with
WordNet

E unwersiTy oF
S8 GOTHENBURG

kernels in practice

» as we discussed, a kernel-based classifier can be seen as an
example-based classifer
» so they share the weakness of being slow at test time
» as the training set grows, the classifier becomes slower. ..
» when should we use a kernel?
» when defining a similarity function is easier than coming up
with features
» or when we think the features interact in some complicated way
» the alternative: extract features as normal, try to use your
intuition and form feature combinations manually or by trial
and error

UNIVERSITY OF
GOTHENBURG

	the primal and dual forms
	mapping feature vectors into higher-dimensional spaces
	kernels in classifiers

