
Machine Learning for NLP
Lecture 7: Neural networks

UNIVERSITY OF

GOTHENBURG

Richard Johansson

October 8, 2015

-20pt

UNIVERSITY OF

GOTHENBURG

the �deep learning tsunami�

I in several �elds, such as speech and image processing, neural
network or �deep learning� models have led to dramatic
improvements

I Manning: �2015 seems like the year when the full force of the
[deep learning] tsunami hit the major NLP conferences�

I out of the machine learning community: �NLP is kind of like a
rabbit in the headlights of the deep learning machine, waiting
to be �attened�

I so, what's the hype about?

http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00239

-20pt

UNIVERSITY OF

GOTHENBURG

overview

I neural networks (NNs) are systems that learn to form useful
abstractions automatically

I learn to form larger units from small pieces

I appealing because it can reduce the feature engineering e�ort
I image borrowed from Josephine Sullivan:

I NNs are excellent for �noisy� problems such as speech and
image processing

I while powerful, they can be cumbersome to train and tend to
require quite a bit of tweaking

-20pt

UNIVERSITY OF

GOTHENBURG

causes of the NN resurgence

I NNs seem to have a hype cycle of about 20 years

I there are a number of reasons for the one we're currently in

I the most important is increasing computational capacity
I for instance, the famous �cat paper� by Stanford/Google

required 1,000 machines (16,000 CPUs)
I Le et al: Building high-level features using large scale

unsupervised learning, ICML 2011.

I much of the recent research is coming out of Google
(DeepMind), Microsoft, Facebook, etc.

I using GPUs from graphics cards can speed up training

I also, a number of new methods proposed recently

http://static.googleusercontent.com/media/research.google.com/sv//archive/unsupervised_icml2012.pdf
http://static.googleusercontent.com/media/research.google.com/sv//archive/unsupervised_icml2012.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

recap: linear separability

I some datasets can't be modeled with a linear classi�er!

I a dataset is linearly separable if there exists a w that gives
us perfect classi�cation

-20pt

UNIVERSITY OF

GOTHENBURG

example: XOR dataset

X = numpy.array([[1, 1],

[1, 0],

[0, 1],

[0, 0]])

Y = ['no', 'yes', 'yes', 'no']

clf = LinearSVC()

clf.fit(X, Y)

linear inseparability, so we get less than 100% accuracy

print(accuracy_score(Y, clf.predict(X)))

-20pt

UNIVERSITY OF

GOTHENBURG

�abstraction� by forming feature combinations

I recall from last lecture: we may add �useful combinations� of
features to make the dataset separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
not bad not-bad Positive

-20pt

UNIVERSITY OF

GOTHENBURG

example: XOR dataset with a combination feature

feature1, feature2, feature1&feature2

X = numpy.array([[1, 1, 1],

[1, 0, 0],

[0, 1, 0],

[0, 0, 0]])

Y = ['no', 'yes', 'yes', 'no']

clf = LinearSVC()

clf.fit(X, Y)

now we have linear separability, so we get 100%

print(accuracy_score(Y, clf.predict(X)))

-20pt

UNIVERSITY OF

GOTHENBURG

expressing feature combinations as �sub-classi�ers�

I instead of de�ning a rule, such as x3 = x1 AND x2, we could
imagine that the combination feature x3 would be computed
by a separate classi�er, for instance LR

I we could train a classi�er using the output of �sub-classi�ers�

-20pt

UNIVERSITY OF

GOTHENBURG

�neurons�

I historically, NNs were inspired by
how biological neural systems
work � hence the name

I as far as I know, modern NNs
and modern neuroscience don't
have much in common

I Andrew Ng: �A single neuron in the brain is an incredibly complex

machine that even today we don't understand. A single `neuron' in

a neural network is an incredibly simple mathematical function that

captures a minuscule fraction of the complexity of a biological

neuron. So to say neural networks mimic the brain, that is true at

the level of loose inspiration, but really arti�cial neural networks are

nothing like what the biological brain does.�

http://www.andrewng.org/

-20pt

UNIVERSITY OF

GOTHENBURG

recap: the logistic or sigmoid function

def logistic(scores):

return 1 / (1 + numpy.exp(-scores))

-20pt

UNIVERSITY OF

GOTHENBURG

a multilayered classi�er

I a feedforward neural network or multilayer perceptron
consists of connected layers of �classi�ers�

I the intermediate classi�ers are called hidden units
I the �nal classi�er is called the output unit

I let's assume two layers for now

I each hidden unit hi computes its output based on its own
weight vector whi

:
hi = f (whi

· x)

I and then the output is computed from the hidden units:

y = f (wo · h)

I the function f is called the activation
I in this lecture, we'll assume that f is the logistic function, so

the hidden units and output unit can be seen as LR classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

two-layered feedforward NN: �gure

-20pt

UNIVERSITY OF

GOTHENBURG

implementation in NumPy

I recall that a sequence of dot products can be seen as a matrix
multiplication

I in NumPy, the NN can be expressed compactly with matrix
multiplication

h = logistic(Wh.dot(x))

y = logistic(Wo.dot(h))

-20pt

UNIVERSITY OF

GOTHENBURG

expressivity of feedforward NNs

I Hornik's universal approximation theorem shows that
feedforward NNs can approximate any (bounded)
mathematical function

I Hornik (1991). Approximation capabilities of multilayer

feedforward networks. Neural Networks, 4(2), 251�257.

I and this is true even with a single hidden layer!

I however, this is mainly of theoretical interest
I the theorem does not say how many hidden units we need
I and it doesn't say how the network should be trained

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

expressivity of feedforward NNs

I Hornik's universal approximation theorem shows that
feedforward NNs can approximate any (bounded)
mathematical function

I Hornik (1991). Approximation capabilities of multilayer

feedforward networks. Neural Networks, 4(2), 251�257.

I and this is true even with a single hidden layer!

I however, this is mainly of theoretical interest
I the theorem does not say how many hidden units we need
I and it doesn't say how the network should be trained

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

�deep learning�

I why the �deep� in �deep learning�?

I although a single hidden layer is su�cient in theory, in practice
it can be better to have several hidden layers

I previously, it was computationally hard to train models with
many hidden layers

I but a number of recently developed algorithmic tricks (and
again, better hardware) has made this more feasible

-20pt

UNIVERSITY OF

GOTHENBURG

training feedforward neural networks

I training a NN consists of �nding the weights in the layers

I so how do we �nd those weights?

I exactly as we did for the SVM and LR!

I state an objective function with a loss
I log loss, hinge loss, etc

I and then tweak the weights to make that loss small
I again, we can use (stochastic) gradient descent to minimize

the loss

-20pt

UNIVERSITY OF

GOTHENBURG

training feedforward neural networks

I training a NN consists of �nding the weights in the layers

I so how do we �nd those weights?

I exactly as we did for the SVM and LR!

I state an objective function with a loss
I log loss, hinge loss, etc

I and then tweak the weights to make that loss small
I again, we can use (stochastic) gradient descent to minimize

the loss

-20pt

UNIVERSITY OF

GOTHENBURG

example

I let's use two layers with logistic units, and then the log
loss

h = σ(W h · x)
y = σ(W o · h)
loss = − log(y)

I so the whole thing becomes

loss = − log σ(W o · σ(W h · x))
I now, to do gradient descent, we need to compute gradients

w.r.t. the weights W h and W o

I ouch! it looks completely unwieldy!

-20pt

UNIVERSITY OF

GOTHENBURG

example

I let's use two layers with logistic units, and then the log
loss

h = σ(W h · x)
y = σ(W o · h)
loss = − log(y)

I so the whole thing becomes

loss = − log σ(W o · σ(W h · x))
I now, to do gradient descent, we need to compute gradients

w.r.t. the weights W h and W o

I ouch! it looks completely unwieldy!

-20pt

UNIVERSITY OF

GOTHENBURG

the chain rule of derivatives/gradients

I NNs consist of functions applied to the output of other
functions

I the chain rule is a useful trick from calculus that can be used
in such situations

I assume that we apply the function f to the output of g

I then the chain rule says how we can compute the gradient of
the combination:

gradient of f (g(x)) = gradient of f (g) · gradient of g(x)

-20pt

UNIVERSITY OF

GOTHENBURG

the general recipe: backpropagation

I using the chain rule, the gradients of the weights in each
layer can be computed from the gradients of the layers
after it

I this trick is called backpropagation

I it's not di�cult, but involves a lot of book-keeping

I fortunately, there are computer programs that can do the
algebra for us!

I in NN software, we usually just declare the network and
the loss, then the gradients are computed under the hood

-20pt

UNIVERSITY OF

GOTHENBURG

optimizing NNs

I unlike the linear classi�ers we studied previously, NNs have
non-convex objective functions with a lot of local minima

I so the end result depends on initialization

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

training e�ciency of NNs

I our previous classi�ers took seconds or minutes to train

I NNs tend to take minutes, hours, days, weeks . . .
I depending on the complexity of the network and the amount of

training data

I NNs use a lot of linear algebra (matrix multiplications) so it
can be useful to work to speed up the math

I parallelize as much as possible
I use optimized math libraries
I use a GPU

-20pt

UNIVERSITY OF

GOTHENBURG

neural network software: Python

I scikit-learn has very limited support for NNs

I the main NN software in the Python world is Theano
I developed by Yoshua Bengio's group in Montréal
I http://deeplearning.net/software/theano

I Theano does a lot of useful math stu�, and integrates nicely
with the GPU, but it can be a bit low-level

I so there are a few libraries that package Theano in a more
user-friendly way, similar to scikit-learn

I pylearn2: http://deeplearning.net/software/pylearn2
I Keras: https://github.com/fchollet/keras

http://deeplearning.net/software/theano
http://deeplearning.net/software/pylearn2
https://github.com/fchollet/keras

-20pt

UNIVERSITY OF

GOTHENBURG

other neural network software

I Ca�e: http://caffe.berkeleyvision.org/

I Torch: http://torch.ch/

http://caffe.berkeleyvision.org/
http://torch.ch/

-20pt

UNIVERSITY OF

GOTHENBURG

coding example with Keras

keras_model = Sequential()

n_hidden = 3

keras_model.add(Dense(input_dim=X.shape[1],

output_dim=n_hidden))

keras_model.add(Activation("sigmoid"))

keras_model.add(Dense(input_dim=n_hidden,

output_dim=1))

keras_model.add(Activation("sigmoid"))

keras_model.compile(loss='binary_crossentropy',

optimizer='rmsprop')

keras_model.fit(X, Y)

-20pt

UNIVERSITY OF

GOTHENBURG

representing words in NNs

I NN implementations tend to prefer dense vectors

I this can be a problem if we are using word-based features

I recall the way we code word features as sparse vectors:

tomato → [0, 0, 1, 0, 0, . . . , 0, 0, 0]
carrot → [0, 0, 0, 0, 0, . . . , 0, 1, 0]

I the solution: represent words with low-dimensional vectors, in
a way so that words with similar meaning have similar vectors

tomato → [0.10,−0.20, 0.45, 1.2,−0.92, 0.71, 0.05]
carrot → [0.08,−0.21, 0.38, 1.3,−0.91, 0.82, 0.09]

I in the NN community, the word vectors are called embeddings

-20pt

UNIVERSITY OF

GOTHENBURG

building the word representations

I the word vectors can be trained directly inside a NN, but often
they are produced separately

I a large corpus is needed to get good vectors
I but the corpus doesn't have to be annotated

I many methods and software packages, here are just two
examples:

I word2vec is based on a method similar to LR
I gensim has a Python-based reimplementation of word2vec

I demo: http://rare-technologies.com/word2vec-tutorial/

I these methods are connected to the ideas of classical
distributional semantics

I more about this in Yuri's seminar on the 16th

http://rare-technologies.com/word2vec-tutorial/

-20pt

UNIVERSITY OF

GOTHENBURG

going beyond classi�cation

I for �noisy� problems, NNs are excellent classi�ers
I recognizing a hand-written digit
I recognizing a face in a photo
I . . .

I for problems that are more symbolic in nature, and if we have
good features, NNs are usually not worth the e�ort

I but the recent enthusiasm about NNs and NLP isn't so much
about classi�cation. . .

I much recent research tends to focus on end-to-end tasks such
as speech recognition and translation

-20pt

UNIVERSITY OF

GOTHENBURG

NNs for sequences: recurrent NNs
I in a recurrent NN, the hidden units can be seen as a

representation of a state

I in each step, the new state is computed from the input and
the previous state

I they can be used for
sequence tagging
problems

I recurrent NN make
excellent language models

I Mikolov et al. (2010):
Recurrent neural network
based language model,
Interspeech.

image by Mikolov et al.

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

translation with NNs: sequence-to-sequence learning

I recently, a team at Google proposed a NN model termed
sequence-to-sequence learning, used in machine translation

I either to rerank outputs generated by a standard SMT system
I or to generate the output directly!

image by Sutskever et al.

I see Sutskever el al. (2014): Sequence to sequence learning
with neural networks, NIPS.

I they used a model called long short-term memory, an
extension of recurrent NNs

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

-20pt

UNIVERSITY OF

GOTHENBURG

outlook

I there has been much creative NN/NLP research lately
I and a number of the leading NN researchers consider NLP the

most interesting unexplored research territory

I but so far, we haven't yet seen the dramatic improvements
that have disrupted other �elds

I the most wide-spread development so far is probably the use of
vector representations as features

I Turian et al. (2010): Word Representations: A Simple and

General Method for Semi-Supervised Learning, ACL.
I Toni will speak about this in his seminar on the 19th

I but what happens if �deep learning� will dominate? will it lead
to a conentration of NLP research to the tech giants?

http://aclweb.org/anthology/P/P10/P10-1040.pdf
http://aclweb.org/anthology/P/P10/P10-1040.pdf

