Machine Learning for NLP
Lecture 7: Neural networks

UNIVI ITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

October 8, 2015

the “deep learning tsunami”

> in several fields, such as speech and image processing, neural
network or “deep learning” models have led to dramatic
improvements

» Manning: “2015 seems like the year when the full force of the
[deep learning] tsunami hit the major NLP conferences’

» out of the machine learning community: “NLP is kind of like a
rabbit in the headlights of the deep learning machine, waiting
to be flattened"

» so, what's the hype about?

UNIVERSITY OF
GOTHENBURG

http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00239

overview

» neural networks (NNs) are systems that learn to form useful
abstractions automatically

» learn to form larger units from small pieces
» appealing because it can reduce the feature engineering effort
» image borrowed from Josephine Sullivan:

CNN
Representation

Extract Features
1 RGB, gradient,)
LBP

» NNs are excellent for “noisy” problems such as speech and
image processing

» while powerful, they can be cumbersome to train and tend to
require quite a bit of tweaking

UNIVERSITY OF
GOTHENBURG

causes of the NN resurgence

» NNs seem to have a hype cycle of about 20 years

> there are a number of reasons for the one we're currently in

» the most important is increasing computational capacity

» for instance, the famous “cat paper” by Stanford/Google
required 1,000 machines (16,000 CPUs)

> Le et al: Building high-level features using large scale
unsupervised learning, ICML 2011.

» much of the recent research is coming out of Google
(DeepMind), Microsoft, Facebook, etc.
» using GPUs from graphics cards can speed up training

> also, a number of new methods proposed recently

UNIVERSITY OF
GOTHENBURG

http://static.googleusercontent.com/media/research.google.com/sv//archive/unsupervised_icml2012.pdf
http://static.googleusercontent.com/media/research.google.com/sv//archive/unsupervised_icml2012.pdf

recap: linear separability

» some datasets can’t be modeled with a linear classifier!

> a dataset is linearly separable if there exists a w that gives
us perfect classification

UNIVERSITY OF
GOTHENBURG

example: XOR dataset

X = numpy.array([[1, 1],
[1, o1,
(o, 11,
fo, 011)

Y [’no’, ’yes’, ’yes’, ’no’]

clf = LinearSVC()
clf.fit(X, Y)

linear inseparability, so we get less than 1007 accuracy
print (accuracy_score(Y, clf.predict(X)))

UNIVERSITY OF
GOTHENBURG

“abstraction” by forming feature combinations

» recall from last lecture: we may add “useful combinations” of
features to make the dataset separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
not bad not-bad Positive

UNIVERSITY OF
GOTHENBURG

example: XOR dataset with a combination feature

featurel, feature2, featurel&feature2
X = numpy.array([[1, 1, 1],

[1, 0, 01,

fo, 1, 01,

(o, o, 011)

Y

[’no’, ‘yes?’, ’yes’, 'no’]

clf = LinearSVC()
clf.fit(X, Y)

now we have linear separability, so we get 100%
print (accuracy_score(Y, clf.predict(X)))

E unwersiTy oF
S8 GOTHENBURG

expressing feature combinations as “sub-classifiers”

» instead of defining a rule, such as x3 = x; AND x», we could
imagine that the combination feature x3 would be computed
by a separate classifier, for instance LR

» we could train a classifier using the output of “sub-classifiers”

classifier 1

classifier 2

NENENEng

UNIVERSITY OF
GOTHENBURG

“neurons”

Structure of a typical neuron

» historically, NNs were inspired by ...
how biological neural systems pervite
work — hence the name :

Axon terminal

Node of
Ranvier

» as far as | know, modern NNs
and modern neuroscience don't
have much in common nucels

Schwann cell

Myelin sheath

» Andrew Ng: “A single neuron in the brain is an incredibly complex
machine that even today we don’t understand. A single ‘neuron’ in
a neural network is an incredibly simple mathematical function that
captures a minuscule fraction of the complexity of a biological
neuron. So to say neural networks mimic the brain, that is true at
the level of loose inspiration, but really artificial neural networks are
nothing like what the biological brain does."

UNIVERSITY OF
GOTHENBURG

http://www.andrewng.org/

recap: the logistic or sigmoid function

def logistic(scores):
return 1 / (1 + numpy.exp(-scores))

i

UNIVERSITY OF
GOTHENBURG

a multilayered classifier

>

UNIVERSITY OF
GOTHENBURG

a feedforward neural network or multilayer perceptron
consists of connected layers of “classifiers”

» the intermediate classifiers are called hidden units
» the final classifier is called the output unit

let's assume two layers for now

each hidden unit h; computes its output based on its own
weight vector wp,.:
hf = f(Wh,' : X)

and then the output is computed from the hidden units:
y =f(wy - h)

the function f is called the activation

> in this lecture, we'll assume that f is the logistic function, so
the hidden units and output unit can be seen as LR classifiers

two-layered feedforward NN: figure

implementation in NumPy

» recall that a sequence of dot products can be seen as a matrix
multiplication

» in NumPy, the NN can be expressed compactly with matrix
multiplication

h = logistic(Wh.dot(x))
y = logistic(Wo.dot(h))

UNIVERSITY OF
GOTHENBURG

expressivity of feedforward NNs

» Hornik’s universal approximation theorem shows that
feedforward NNs can approximate any (bounded)
mathematical function

» Hornik (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2), 251-257.

» and this is true even with a single hidden layer!

UNIVERSITY OF
GOTHENBURG

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

expressivity of feedforward NNs

» Hornik’s universal approximation theorem shows that
feedforward NNs can approximate any (bounded)
mathematical function

» Hornik (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2), 251-257.
» and this is true even with a single hidden layer!
> however, this is mainly of theoretical interest

» the theorem does not say how many hidden units we need
» and it doesn’t say how the network should be trained

UNIVERSITY OF
GOTHENBURG

http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

“deep learning”

» why the “deep” in “deep learning”?
» although a single hidden layer is sufficient in theory, in practice
it can be better to have several hidden layers

Diagonal

Node

> previously, it was computationally hard to train models with
many hidden layers

» but a number of recently developed algorithmic tricks (and
again, better hardware) has made this more feasible

training feedforward neural networks

» training a NN consists of finding the weights in the layers

» so how do we find those weights?

UNIVERSITY OF
GOTHENBURG

training feedforward neural networks

» training a NN consists of finding the weights in the layers
» so how do we find those weights?
» exactly as we did for the SVM and LR!
» state an objective function with a loss
» log loss, hinge loss, etc
> and then tweak the weights to make that loss small

» again, we can use (stochastic) gradient descent to minimize
the loss

UNIVERSITY OF
GOTHENBURG

example

> let’s use two layers with logistic units, and then the log
loss

h= O’(Wh-X)
y=0(W, - h)
loss = — log(y)

> so the whole thing becomes

loss = —logo (W, - (W - x))
» now, to do gradient descent, we need to compute gradients
w.r.t. the weights Wy, and W,

UNIVERSITY OF
GOTHENBURG

example

v

let’s use two layers with logistic units, and then the log
loss
h= O’(Wh . X)
y=0(W, - h)
loss = — log(y)

so the whole thing becomes

v

loss = —logo (W, - (W - x))
» now, to do gradient descent, we need to compute gradients
w.r.t. the weights Wy, and W,

v

ouch! it looks completely unwieldy!

UNIVERSITY OF
GOTHENBURG

the chain rule of derivatives/gradients

UNIVERSITY OF
GOTHENBURG

NNs consist of functions applied to the output of other
functions

the chain rule is a useful trick from calculus that can be used
in such situations

assume that we apply the function f to the output of g

then the chain rule says how we can compute the gradient of
the combination:

gradient of f(g(x)) = gradient of f(g) - gradient of g(x)

the general recipe: backpropagation

» using the chain rule, the gradients of the weights in each
layer can be computed from the gradients of the layers
after it

» this trick is called backpropagation

» it's not difficult, but involves a lot of book-keeping

» fortunately, there are computer programs that can do the
algebra for us!
» in NN software, we usually just declare the network and
the loss, then the gradients are computed under the hood

UNIVERSITY OF
GOTHENBURG

optimizing NNs

» unlike the linear classifiers we studied previously, NNs have
non-convex objective functions with a lot of local minima

» so the end result depends on initialization

0, 300

0.150

0.150

00€£°0

UNIVERSITY OF
GOTHENBURG

training efficiency of NNs

» our previous classifiers took seconds or minutes to train
» NNs tend to take minutes, hours, days, weeks ...

» depending on the complexity of the network and the amount of
training data

» NNs use a lot of linear algebra (matrix multiplications) so it
can be useful to work to speed up the math

» parallelize as much as possible
» use optimized math libraries
» use a GPU

UNIVERSITY OF
GOTHENBURG

neural network software: Python

v

scikit-learn has very limited support for NNs
the main NN software in the Python world is Theano

» developed by Yoshua Bengio's group in Montréal
» http://deeplearning.net/software/theano

v

v

Theano does a lot of useful math stuff, and integrates nicely
with the GPU, but it can be a bit low-level

so there are a few libraries that package Theano in a more
user-friendly way, similar to scikit-learn

» pylearn2: http://deeplearning.net/software/pylearn2
» Keras: https://github.com/fchollet/keras

v

UNIVERSITY OF
GOTHENBURG

http://deeplearning.net/software/theano
http://deeplearning.net/software/pylearn2
https://github.com/fchollet/keras

other neural network software

» Caffe: http://caffe.berkeleyvision.org/
» Torch: http://torch.ch/

E unwersiTy oF
S8 GOTHENBURG

http://caffe.berkeleyvision.org/
http://torch.ch/

coding example with Keras

keras_model = Sequential()

n_hidden = 3

keras_model.add(Dense (input_dim=X.shape[1],
output_dim=n_hidden))

keras_model.add(Activation("sigmoid"))

keras_model.add(Dense(input_dim=n_hidden,
output_dim=1))
keras_model.add(Activation("sigmoid"))

keras_model.compile(loss=’binary_crossentropy’,
optimizer=’rmsprop’)

keras_model.fit (X, Y)

UNIVERSITY OF
GOTHENBURG

representing words in NNs

» NN implementations tend to prefer dense vectors
> this can be a problem if we are using word-based features

» recall the way we code word features as sparse vectors:

tomato — [0,0,1,0,0,...,0,0,0]
carrot — [0,0,0,0,0,...,0,1,0]

» the solution: represent words with low-dimensional vectors, in
a way so that words with similar meaning have similar vectors

tomato — [0.10,—0.20,0.45,1.2, —0.92,0.71,0.05]
carrot — [0.08,—0.21,0.38,1.3,—0.91, 0.82,0.09]

> in the NN community, the word vectors are called embeddings

UNIVERSITY OF
GOTHENBURG

building the word representations

UNIVERSITY OF
GOTHENBURG

the word vectors can be trained directly inside a NN, but often
they are produced separately

> a large corpus is needed to get good vectors
» but the corpus doesn’t have to be annotated

many methods and software packages, here are just two
examples:

» word2vec is based on a method similar to LR
» gensim has a Python-based reimplementation of word2vec

» demo: http://rare-technologies.com/word2vec-tutorial/

these methods are connected to the ideas of classical
distributional semantics

more about this in Yuri’s seminar on the 16th

http://rare-technologies.com/word2vec-tutorial/

going beyond classification

UNIVERSITY OF
GOTHENBURG

for “noisy” problems, NNs are excellent classifiers

> recognizing a hand-written digit

» recognizing a face in a photo

>
for problems that are more symbolic in nature, and if we have
good features, NNs are usually not worth the effort

but the recent enthusiasm about NNs and NLP isn'"t so much
about classification. . .

much recent research tends to focus on end-to-end tasks such
as speech recognition and translation

NNs for sequences: recurrent NNs

>

UNIVERSITY OF
GOTHENBURG

in a recurrent NN, the hidden units can be seen as a

representation of a state

in each step, the new state is computed from the input and

the previous state

they can be used for
sequence tagging
problems

recurrent NN make
excellent language models

Mikolov et al. (2010):
Recurrent neural network
based language model,
Interspeech.

INPUT (t)

CONTEXT (t-1)

CONTEXT (t)

OUTPUT (t)

image by Mikolov et al.

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

translation with NNs: sequence-to-sequence learning

> recently, a team at Google proposed a NN model termed
sequence-to-sequence learning, used in machine translation
» either to rerank outputs generated by a standard SMT system

> or to generate the output directly!

w X <EOS>

(N N N B o N R

T T

A B C <EOS>

X —— —> <
< —> —> N
—>

image by Sutskever et al.
» see Sutskever el al. (2014): Sequence to sequence learning
with neural networks, NIPS.

> they used a model called long short-term memory, an
extension of recurrent NNs

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

outlook

UNIVERSITY OF
GOTHENBURG

there has been much creative NN/NLP research lately
» and a number of the leading NN researchers consider NLP the
most interesting unexplored research territory
but so far, we haven't yet seen the dramatic improvements
that have disrupted other fields
the most wide-spread development so far is probably the use of
vector representations as features
» Turian et al. (2010): Word Representations: A Simple and
General Method for Semi-Supervised Learning, ACL.
» Toni will speak about this in his seminar on the 19th
but what happens if “deep learning” will dominate? will it lead
to a conentration of NLP research to the tech giants?

http://aclweb.org/anthology/P/P10/P10-1040.pdf
http://aclweb.org/anthology/P/P10/P10-1040.pdf

