
Solution to the example exam
LT2306: Machine learning, October 2016

Score required for a VG: 22 points

Question 1 of 6: Hillary or the Donald? (6 points)

We would like to build a system that tries to predict which candidate an American voter will
prefer in the 2016 presidential election: Clinton, Trump, another candidate, or abstaining. This
system has access to extensive information about each voter, from which we can construct
the features that the classifier will be using. The system should train a classifier, and then
evaluate that classifier on a separate test set.

(a, 5p) Sketch an implementation of the system in Python. You should use standard functions
in scikit-learn as far as possible. If you don’t remember the names of scikit-learn functions and
classes, just use pseudocode or invented names, as long as it is clear what you mean. (It’s OK
if you exclude the imports.)

You can propose any feature that you think could be useful for this task, except features
related to voting, which is what we are trying to predict, or completely unrealistic features
such as reading the voter’s mind. You may assume that you have access to all the resources
(e.g. databases of personal, financial, and geographical data) that you need to compute the
features that you have defined, and that there are Python functions to deal with that data.
Your implementation needs to use at least three different features.

(b, 1p) Discuss briefly the ethical implications of building and using such a classifier.

Solution.
(a) The idea of this task is twofold: thinking of what features could be useful for the task,
and showing that you can use the scikit-learn library. Here’s a typical solution. Obviously, all
the different look up functions are invented, and my solution assumes that we have access to
a collection of people identified by their social security numbers. To get 5 points, a solution
needs to include some credible features, and code that’s reasonably close to scikit-learn. (It’s
OK if you exclude the imports.)

from sklearn.feature_extraction import DictVectorizer

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from sklearn.metrics import accuracy_score

from sklearn.cross_validation import train_test_split

def extract_features(soc_sec_nbr):

x = {}

x[’gender’] = look_up_gender(soc_sec_nbr)

x[’race’] = look_up_race(soc_sec_nbr)

x[’home_state’] = look_up_race(soc_sec_nbr)

x[’education’] = look_up_education(soc_sec_nbr)



x[’age’] = look_up_age(soc_sec_nbr)

x[’income’] = look_up_income(soc_sec_nbr)

return x

if __name__ == ’__main__’:

soc_sec_nbrs = ... # we assume that we can access a selection of voters

# create features for all instances

X = [ extract_features(nbr) for nbr in soc_sec_nbrs ]

# we make the unrealistic assumption that we know the vote of each

# person -- let’s say this might come from interviews

Y = [ look_up_vote(nbr) for nbr in soc_sec_nbrs ]

# split the data into training and test parts

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y,

train_size=0.8,

random_state=0)

# build a pipeline consisting of a vectorizer

# and a learning algorithm

classifier = Pipeline([(’vec’, DictVectorizer()),

(’cls’, LinearSVC())])

# train the model

classifier.fit(Xtrain, Ytrain)

# predict

Yguess = classifier.predict(Xtest)

# evaluate

print(accuracy_score(Ytest, Yguess))

Actually, this pipeline will probably not work fantastically in practice, since we’re mixing
numerical features (of different magnitudes) with symbolic features. It’s probably good to
include a Normalizer in the pipeline, so that the numerical features (in particular the income)
are scaled down.

(b) Obviously, as soon as we are dealing with personal data, we need to be very careful. In
particular, if we’d like to use voting preferences to train a classifier, it seems reasonable to ask
for the consent of the people who are included in the training set.

Also, it’s difficult to see a use case for this classifier that isn’t a bit dubious, maybe except as a
statistical analysis, for determining correlation of features with voting patterns. Probably many
people prefer not to be labeled (“you seem like a Trump voter”). For an example of classification
gone wrong, see https://twitter.com/jackyalcine/status/615329515909156865.

This is an open-ended question with no clear-cut answer. A passable answer needs to de-
monstrate a certain awareness that we can’t apply these kinds of methods tools blindly – you
don’t need to include all the discussions I wrote here.



Question 2 of 6: The perceptron algorithm (6 points)

(a, 4p) Write down the perceptron algorithm for training binary classifiers. You can write it
in pseudocode or Python (either using standard data structures, or NumPy).

(b, 2p) Let’s assume that we’d like to develop a sentiment polarity classifier for review texts.
We have the following small training set:

X = [ [’this’, ’movie’, ’was’, ’good’],

[’this’, ’movie’, ’was’, ’really’, ’bad’],

[’it’, ’is’, ’as’, ’good’, ’as’, ’its’, ’predecessor’],

[’it’, ’is’, ’so’, ’bad’, ’that’, ’I’, ’have’, ’no’, ’words’] ]

Y = [’positive’, ’negative’, ’positive’, ’negative’]

What does your perceptron classifier contain after two iterations through this training set?
That is, what numbers are stored in the data structure that you use to represent the classifier?

Solution.
(a) The perceptron learning algorithm can be written in a variety of different ways (and all
would be counted as correct), but here we will stick to the version presented in the lectures.
Here’s the pseudocode, using vector notation. (For solutions in Python, please take a look at
the code from the second lecture.)

Inputs: a list of example feature vectors X
a list of outputs Y
the number of iterations N

w = zero vector
repeat N times
for each training pair (xi, yi)

score = w · xi

if score ≤ 0 and yi belongs to the positive class
w = w + xi

if score ≥ 0 and yi belongs to the negative class
w = w − xi

(b) We assume that the documents are represented using an unweighted bag-of-words feature
representation. Then, after looking at the first two instances, the weight vector (or weight
dictionary) stores the number +1 at the dimension corresponding to the word good and -1 for
really and bad. This weight vector will not change as we look at the two other examples, and
it will also remain unchanged during the second iteration over the training set.

Question 3 of 6: Understanding logistic regression (6 points)

The weight vector w in a logistic regression classifier is defined as the w that minimizes the
function f in the following equation:

f(w,X, Y ) =
n∑

i=1

L(w,xi, yi) +
λ

2
·R(w)

As usual, X is a list of feature vectors of all the instances in the training set and
Y the corresponding outputs (coded as +1 or -1). The notation

∑n
i=1 means that we sum

over all instances in the training set. The parameter λ (Greek letter lambda) is discussed below.



Specifically, the functions L and R are defined as follows:

L(w,xi, yi) = log(1 + exp(−yi · (w · xi)))

and

R(w) = ‖w‖2

which is the squared vector length of w, defined as
∑m

j=1w
2
j where m is the number of

dimensions in the vector (and wj the j:th element of w).

(a, 1p) What is the purpose of L(w,xi, yi) and R(w), respectively?
(b, 1p) What happens to w if λ is set to a high value such as 1000000? What if it is a low
value such as 0.000001?
(c, 3p) Below is the pseudocode of a training algorithm that (approximately) solves the opti-
mization problem in the logistic regression model. Explain on a high level how the algorithm
is derived from the equation in the optimization problem.

Inputs: a list of example feature vectors X
a list of outputs Y
the parameter λ
the number of steps T
step length η

w = zero vector
repeat T times

select a random training pair (xi, yi)
score = w · xi

w = (1− η · λ) ·w + (η · yi
1+exp(yi·score)) · xi

(d, 1p) In the second lab assignment, the parameter η (Greek letter eta) was not an input to
the algorithm but was instead set automatically in a way so that it decreased gradually during
training. Why is this often better than using a constant value for η?

Solution.
(a) L is the loss function, which shows how well the classifier fits the training set. In this
case, L is the log loss because we are training a logistic regression classifier. It is the log of
the output of the sigmoid function, which represents the probability assigned by our model
to the correct output. R is the regularizer, which represents the “simplicity” of the classifier
in some way – the Occam’s razor intuition. The regularizer used here will penalize large weights.

(b) λ controls the tradeoff between the loss and the regularizer: between fitting the training
data and keeping the classifier simple. If λ is a large number, the weights will become very
small values. Conversely, if it’s a small number, the classifier will “work harder” to fit the
training set, so some weights will probably be quite large.

(c) To convert the equation into a training algorithm, we need to apply an optimization algo-
rithm to the objective function. In this case, we apply the stochastic gradient descent (SGD)
algorithm. In SGD, we train in a step-by-step fashion, by selecting one training example in each
step. We compute the gradient of the objective f with respect to that example, and update
the weight vector: w = w − η · gradient. In this case, the gradient of the regularizer plus the
loss is

λ ·w − yi
1 + exp(yi · score)

· xi



To get 3 points here, you need to mention at least that we’re using stochastic gradient descent,
and something about the update step being related to the gradient of the function f .

(d) If η is too large, our step length is too long, so we may have difficulties to find the optimum
exactly because we are “jumping over” it. On the other hand, if it’s too small, then we may be
moving too slowly in the beginning. (See the lecture on optimization for a visual explanation.)

Question 4 of 6: Neural network classification (6 points)

(a, 4p) Describe how classification is done in a binary feedforward neural network classifier
with one hidden layer. Explain how the input looks, and the steps that are carried out by the
classifier until the output is produced.
(b, 2p) Describe in general terms how a feedforward neural network can be trained.

Solution.
(a) As usual, the input to the classifier is a numerical vector x encoding our features. This is
more or less like in the other classifier (SVM, LR), and x could be prepared using one of the
vectorizers in scikit-learn. A difference in practice is that x tends to have a lower dimensionality
when working with NNs, and in particular for words we prefer to use embeddings rather than
one-hot encoding.

The first step in a feedforward NN is to compute the values in the hidden layer, which
will result in a new vector h. Each number in h is the result of applying a “sub-classifier”: for
instance, to compute the first number in h, let’s call it h1, we use a weight vector wh1 specifically
dedicated to h1. We compute the score by using the dot product between this weight vector
and the input vector x, and then applying an activation function ah. For instance, the sigmoid
is a common choice of activation function, and in this case the “sub-classifier” is like a logistic
regression classifier.

When all the numbers in h have been computed in this way, we apply a similar procedure
to compute the output. But now, we use h instead of the input vector x.

Here is a figure illustrating this process:

Alternatively, using matrix notation, we can explain the NN classification in a less verbose
way. We make the vector h of hidden-layer outputs by first multiplying the weight matrix Wh

with the input vector x, and then applying the activation function ah to the result of the matrix
multiplication. (The activation function is applied element by element in the vector.)

h = ah(Wh · x)

And the output value is computed is a similar fashion, but using the hidden-layer vector instead:

y = ao(Wo · h)

To answer this question and get a full score, you can draw a figure, use formulas, or just explain
in plain text. A complete solution will mention that the input is a numerical vector, and how



each “layer” is computed from a previous layer (weighted score and activation function).

(b) Just like for logistic regression in Question 3, it’s about defining an objective function
that we optimize. This will typically be a loss function (for instance the log loss) applied to the
network’s output. Most commonly, we’ll then apply some sort of stochastic gradient descent, as
in the logistic regression training algorithm. The gradients of the weights are computed using
the backpropagation algorithm, which works by first computing the value of the output and
all hidden units, and then computing the gradients in each layer backwards from the output
through the lower layers. A passable solution to this question will at least mention that we’re
doing optimization based on gradients.

Question 5 of 6: Troublesome words (6 points)

Features based on words are used in many machine learning systems for language processing.

(a, 3p) Since word vocabularies are large, we may run into problems because some word
features are observed in the training data just a few times or not at all. Describe at least one
method to make machine learning systems based on word features more robust.

(b, 3p) We train a classifier for polarity classification of movie reviews, based on a bag-of-words
feature representation. Explain why this classifier is likely to have a lower classification accuracy
if applied to reviews of toys, and suggest at least one idea for dealing with this problem.

Solution.
(a) We need some way to generalize word-based features, so that we aren’t completely helpless
when we encounter some word that we haven’t seen before. The most common way nowadays
is to use a large corpus to train word clusters (such as Brown clusters) or embeddings. With
clusters, we group words which behave similarly into a cluster, so that there could be a cluster
consisting of person names or locations, for instance. Similarly, word embeddings place closely
related words near each other in a vector space.

As an alternative to building word representations from a corpus, we could try to use a
lexical resource such as WordNet.

(b) The general problem is that the distribution of features differs between domains, and our
learning algorithms don’t know which features are generally useful and which are just useful in
some domain. This is particularly true of word features, which of course can differ a lot beween
domains. For instance, if we train a classifier on movie reviews, the classifier will probably
pick up some movie-related words, such as fast-paced or well-directed, which are less relevant
for classifying reviews of toys. And conversely, there might be toy-related words (for instance
sturdy) that are predictive of some polarity but that our classifier doesn’t know about, because
we don’t generally see them in movie reviews.

To address this problem, we can try to apply any of the domain adaptation techniques that
we saw in the last lecture. For instance, if we have a lot of unlabeled toy reviews, we can try
to build word clusters or embeddings using the toy review corpus as in (a). Or we could try
instance weighting: giving a higher importance to those training examples in the movie corpus
that are more similar to reviews in the toy corpus.

Question 6 of 6: Finding speech events (6 points)

We would like to develop a system that finds speech events in text. For instance, in the
following sentence

“It’s a problem that clearly has to be resolved,” said David Cooke, executive director of the RTC.



the system should spot that there’s a speech event because of the word said, which we
refer to as a trigger word. In addition to the triggers, we’d like to find the message and
speaker of each speech event; for instance, in the example sentence, the message is It’s a pro-
blem that clearly has to be resolved and the speaker David Cooke, executive director of the RTC.

(a, 5p) Describe how you would address this problem using machine learning techniques.
Program code isn’t mandatory, but you can use pseudocode or Python if it’s needed for your
explanation. Your solution should explain what types of learning techniques you would use,
how they would be used, and what kind of information (features, preprocessing, external
resources) you would need. Also, if you make any simplifying assumption to make the problem
more tractable, please describe them.

(b, 1p) How do you think such a system should be evaluated?

Solution.
(a) This question is intentionally open-ended, because its purpose is to test your skills in
taking a problem and casting it as a machine learning task. So there are many imaginable
ways in which this task could be solved, and any solution that is credible and well motivated
and comes reasonably close will get a full score. I will give a few example solutions here, just
to show clearly that they can be completely different.

Solution 1: sequence tagging. We could view this task as a markup task, which as we have
seen in the third assignment can be solved using sequence tagging techniques. To convert
the task into sequence tagging, it’s best to make the parts of the markup (trigger, speaker,
message) into word-by-word tags, for instance IOB (inside/outside/beginning) tags, as in the
third assignment. Here’s an example:

‘‘ Remember Pinocchio ? ’’ says a female voice .

O B-msg I-msg I-msg O B-trg B-spk I-spk I-spk O

After this conversion, it’s just a matter of applying some effective sequence model. The easiest
solution is to use a greedy step-by-step classifier as in the assignment (and optionally use beam
search or Viterbi at test time). Or we could use a specialized learning algorithm for sequence
problems (e.g. structured perceptron or conditional random field), or a sequence-based neural
network (e.g. LSTM).

If we’re using a step-by-step classifier as in the assignment, we need to think of the features.
For this type of model, features tend to be extracted from a small window around the current
token under consideration. For instance, it’s probably useful to include a previous token feature
when finding the start of the message, since they are often preceded by a quotation mark. In
addition to token features, we might think of using the output of a part-of-speech tagger
or maybe even a named entity recognizer (which might help us to find the speakers). For a
sequence-based NN, we typically don’t use any features except the word embedding of the
current token.

Limitations: this is an easy and appealing solution, and probably more efficient than the
two solutions below. There are a couple of limitations. First, that it can’t detect speech
events inside other speech events – but these are probably quite rare anyway. For instance:
Upon returning to New York, “Exhausted, I got into a taxicab, and the woman driver said:
‘Americans make better fishermen,’ ” he recalled. Another limitation of this solution is that if
the sequence tagger finds a message or a speaker, it doesn’t tell us which speech event (that
is, which trigger) it is connected to. And the model is free to propose speakers and messages



without even finding a trigger. This can probably be taken care of if we detect the triggers in
a first step, and then find the speakers and messages.

Solution 2: classifying nodes in a parse tree. Another solution would be to apply a parser to
the sentence. We could then use a two-stage process: first we have a classifier that spots the
triggers, and then a second classifier that finds the speaker and message by looking at subtrees
in the parse tree. For instance, here is a sentence containing a speech event, and as you can
see, the speaker and message are subtrees directly connected to the trigger in this case.

The most important feature for the first classifier is obviously the word itself and possibly
other words around it: this subtask is similar to Solution 1. For the second classifier, it seems
natural to include a feature that shows how a subtree is related to the trigger, e.g. nsubj for
the speaker and ccomp in the example above. But other features could also be useful: maybe
again something to pick up the quotation marks.

Limitations: we need to have a parser, and the success of our system is dependent on
the parser being accurate. English parsers are quite good nowadays, but if we’d like to
work with another language, this approach might work less well. This solution does not
have the limitation of Solution 1: it’s can work even if speech events are nested. On the
other hand, it will not work across sentence boundaries, unless we add some special solution
to handle this case. For instance: Jane told me “Tarzan is my man. He is the king of the jungle.”

Solution 3: using a semantic role labeler for preprocessing. I think this solution is a bit boring
(and overkill), since semantic role labeling (SRL) can be seen as a general task of which finding
speech events is a special case. SRL systems find events of different types, and extracts their
participants. For instance, if using an SRL system based on FrameNet, we can look for events
belonging to the frame Statement and then just pick out the Speaker and Message as
well. Not much machine learning necessary here, and as I mentioned, this makes the task a bit
too easy. . . Limitations: this is an expensive solution because we need to have an existing SRL
system at hand, and general SRL is quite difficult. (Our special case is probably easier to do
reliably.) Also, it limits the applicability in languages beside English, where SRL systems of
decent quality are rare. And as in the parse-tree-based solution, we are probably limited to
finding statements contained within single sentences.

(b) Again, this is quite an open-ended question and the design of the evaluation protocol will
reflect what we think is important. Anyway, I think that the natural approach will probably
be to use a labeled precision and recall evaluation: something quite similar to the evaluation
we used in the third assignment when evaluating the named-entity recognizer.

To do this, we count the number of correctly detected triggers: that is, the number of triggers
in your output that exactly match coincide with some trigger in the gold standard. We then
divide this number by the number of predicted triggers to get the precision, and by the number
of triggers in the gold standard to get the recall.

We then compute precision and recall values for the detection of speakers and of messages.
This evaluation should ideally take into account that a speaker or message needs to be correctly
linked to a trigger in order to be counted as correctly detected.

Alternatively (if we’re using Solution 1) we could compute the accuracy on the level of IOB
tags, but I think this is a bit less interesting.


