
Machine Learning for NLP
Lecture 2: Linear classi�ers

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 2, 2016

-20pt

UNIVERSITY OF

GOTHENBURG

math in machine learning

I machine learning is a �mathy� subject. . .

I the most important branches of mathematics used in ML:
I probability and statistical theory
I linear algebra
I optimization

I in this lecture, we'll see some basic linear algebra and see
how that relates to classi�ers

I we will also take a look at how linear algebra is implemented in
Python and use it to code a learning algorithm

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the perceptron revisited

basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

the perceptron classi�er

I the perceptron learning algorithm creates a weight table

I each weight in the table corresponds to a feature
I e.g. "fine" probably has a high positive weight in sentiment

analysis
I "boring" a negative weight
I "and" near zero

I classi�cation is carried out by summing the weights for each
feature

I one class is associated with positive scores, another with
negative scores

I so we can handle two-class problems: binary classi�cation

-20pt

UNIVERSITY OF

GOTHENBURG

the perceptron learning algorithm

I start with an empty weight table

I classify according to the current weight table

I each time we misclassify, change the weight table a bit
I if a positive instance was misclassi�ed, add 1 to the weight of

each feature in the document
I and conversely . . .

-20pt

UNIVERSITY OF

GOTHENBURG

a historical note

I the perceptron was invented in 1957 by
Frank Rosenblatt

I here's an image (from Wikipedia) of the
�rst implementation

I initially, a lot of hype!

I the realization of its limitations led to a
backlash against machine learning in general

I the nail in the co�n was the publication in
1969 of the book Perceptrons by Minsky
and Papert

I new hype in the 1980s, and now. . .

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the perceptron revisited

basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

vectors

I a tuple consisting of n numbers is called a vector

I the set of all possible tuples of length n is called an
n-dimensional vector space

I for instance: (1, 2) is a 2-dimensional vector

I they can be interpreted geometrically, either as a point in a
coordinate system

1 2

1

2

I . . . or as a direction (e.g. of motion or force)

-20pt

UNIVERSITY OF

GOTHENBURG

basic linear algebra

the basic operations on vectors:

I scaling: α · v = α · (v1, . . . , vn) = (α · v1, . . . , α · vn)
I addition and subtraction:
v +w = (v1, . . . , vn) + (w1, . . . ,wn) = (v1 + w1, . . . , vn + wn)

I scalar product or dot product:
v ·w = (v1, . . . , vn) · (w1, . . . ,wn) = v1 · w1 + . . .+ vn · wn

I vector length or norm:
|v | = |(v1, . . . , vn)| =

√
v1 · v1 + . . .+ vn · vn =

√
v · v

-20pt

UNIVERSITY OF

GOTHENBURG

examples: basic linear algebra

I 0.5 · (1, 0, 0, 1) = (0.5, 0, 0, 0.5)

I (1, 0, 0, 1) + (0, 0, 1, 1) = (1, 0, 1, 2)

I (1, 0, 0, 1) · (0, 0, 1, 1) = 1 · 0+ 0 · 0+ 0 · 1+ 1 · 1 = 1

I |(1, 0, 0, 1)| =
√
1 · 1+ 0 · 0+ 0 · 0+ 1 · 1 =

√
2

-20pt

UNIVERSITY OF

GOTHENBURG

beware the ambiguous notation!

I multiplying two numbers: a · b or ab

I scaling a vector a · v or av

I dot product between two vectors: v ·w or vw

I sometimes, numbers and vectors are distinguished by setting
the vectors in boldface (x , v) or by arrow notation (~x , ~v)

-20pt

UNIVERSITY OF

GOTHENBURG

simple linear algebra implementation

I naively, we could implement the basic vector operations in
Python:

I def scale(a, v):

return [a*vk for vk in v]
I def vsum(v, w):

return [vk+wk for (vk,wk) in zip(v, w)]
I def dot(v, w):

return sum([vk*wk for (vk,wk) in zip(v, w)])
I def vlength(v):

return math.sqrt(dot(v, v))

I however, this is ine�cient if the dimension of the vector space
is high

-20pt

UNIVERSITY OF

GOTHENBURG

linear algebra implementation: better

I NumPy and SciPy are Python libraries containing many
mathematical functions

I they are interlinked and typically installed together
I scikit-learn relies on both of them

I they use specialized math libraries to make computations
faster

I e.g. BLAS for your processor or graphics card

I example with a 100 million dimension random vector:
I my simple function dot(v, v) takes 81 seconds
I numpy.dot(v, v) takes 0.15 seconds

-20pt

UNIVERSITY OF

GOTHENBURG

NumPy linear algebra examples

>>> import numpy

>>> v1 = numpy.array([1, 0, 0, 1, 0])

>>> v2 = numpy.array([0, 2, 1, -2, 1])

>>> v1

array([1, 0, 0, 1, 0])

>>> v2

array([0, 2, 1, -2, 1])

>>> v1 + v2

array([1, 2, 1, -1, 1])

>>> 100 * v1

array([100, 0, 0, 100, 0])

>>> numpy.dot(v1, v2)

-2

>>> v1.dot(v2)

-2

>>> numpy.linalg.norm(v1)

1.4142135623730951

-20pt

UNIVERSITY OF

GOTHENBURG

sparse vectors

I in NLP, feature vectors are a bit peculiar compared to some
other �elds (e.g. speech and image processing):

I the vector spaces often have a very high dimension
I in each feature vector, most of the entries are zero
I ["prices", "fall"] → (0, 1, 0, . . . , 0, 1, 0, . . . , 0, 0, 0)

I sparse vector: keep track of non-zero entries only:
[(2, 1), (10, 1)]

I in some cases, this saves memory and is much faster

-20pt

UNIVERSITY OF

GOTHENBURG

sparse vectors in Python

I SciPy includes �ve di�erent types of sparse vectors

I in scikit-learn, DictVectorizer and CountVectorizer create
vectors of the class csr_matrix

I more on this when we discuss classi�er implementation

I see also http:

//docs.scipy.org/doc/scipy/reference/sparse.html

http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

-20pt

UNIVERSITY OF

GOTHENBURG

matrices

I a matrix is a 2-dimensional array of numbers: a �list of lists�[
1 2 0
−2 1 0

]
I note that a vector can be seen as a special case of a matrix: a

row or a column

[
−2 1 0

] −21
0

-20pt

UNIVERSITY OF

GOTHENBURG

reasons for using matrices

I matrices have a geometric interpretation, as we'll see in a
moment

I however, in this context we mainly care about them to speed
up our programs

I we can see matrices as collections of vectors
I in Python, it's more e�cient to carry out a small number of

operations on large matrices than on many small vectors

-20pt

UNIVERSITY OF

GOTHENBURG

basic matrix operations

the basic elementwise operations on matrices, similar to what we
did for the vectors:

I scaling: multiply all the cells by some number

10 ·
[

1 2
3 4

]
=

[
10 20
30 40

]
I addition / subtraction:[

1 2
3 4

]
+

[
10 20
30 40

]
=

[
11 22
33 44

]

-20pt

UNIVERSITY OF

GOTHENBURG

matrix multiplication

I matrix multiplication is an extension of the dot product for
vectors

I each cell in the new matrix is computed as the dot product
between a row and a column:[

1 2
3 4

]
·
[

10 20
30 40

]
=

[
70 100
150 220

]

-20pt

UNIVERSITY OF

GOTHENBURG

matrix multiplication

I matrix multiplication is an extension of the dot product for
vectors

I each cell in the new matrix is computed as the dot product
between a row and a column:[

1 2

3 4

]
·
[
10 20
30 40

]
=

[
70 100
150 220

]

-20pt

UNIVERSITY OF

GOTHENBURG

matrix multiplication

I matrix multiplication is an extension of the dot product for
vectors

I each cell in the new matrix is computed as the dot product
between a row and a column:[

1 2

3 4

]
·
[

10 20

30 40

]
=

[
70 100

150 220

]

-20pt

UNIVERSITY OF

GOTHENBURG

matrix multiplication

I matrix multiplication is an extension of the dot product for
vectors

I each cell in the new matrix is computed as the dot product
between a row and a column:[

1 2
3 4

]
·
[

10 20
30 40

]
=

[
70 100
150 220

]

-20pt

UNIVERSITY OF

GOTHENBURG

geometric interpretation of matrix multiplication

I as mentioned, we use matrix multiplication (and other matrix
operations) mainly for e�ciency in this course

I a matrix multiplication instead of many dot products

I however, in geometry we can use matrix multiplication can be
used to express many useful transformations

I scaling
I rotation
I projection from 3D to 2D
I . . .

-20pt

UNIVERSITY OF

GOTHENBURG

matrix multiplication in NumPy

A = numpy.array([[1, 2], [3, 4]])

B = numpy.array([[10, 20], [30, 40]])

print(A.dot(B))

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the perceptron revisited

basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

the �rst step: mapping features to numerical vectors

I scikit-learn's learning methods works with features as
numbers, not strings

I they can't directly use the feature dicts we have stored in X

I converting from string to numbers is the purpose of these lines:
vec = DictVectorizer()

Xe = vec.fit_transform(X)

-20pt

UNIVERSITY OF

GOTHENBURG

types of vectorizers

I a DictVectorizer converts from attribute�value dicts:

I a CountVectorizer converts from texts (after applying a
tokenizer) or lists:

I a TfidfVectorizer is like a CountVectorizer, but also uses
TF*IDF

-20pt

UNIVERSITY OF

GOTHENBURG

what goes on in a DictVectorizer?

I each feature corresponds to one or more columns in the output
matrix

I easy case: boolean and numerical features:

I for string features, we reserve one column for each possible
value: one-hot encoding

I that is, we convert to booleans

-20pt

UNIVERSITY OF

GOTHENBURG

what goes on in a DictVectorizer?

I each feature corresponds to one or more columns in the output
matrix

I easy case: boolean and numerical features:

I for string features, we reserve one column for each possible
value: one-hot encoding

I that is, we convert to booleans

-20pt

UNIVERSITY OF

GOTHENBURG

code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{'f1':'NP', 'f2':'in', 'f3':False, 'f4':7},

{'f1':'NP', 'f2':'on', 'f3':True, 'f4':2},

{'f1':'VP', 'f2':'in', 'f3':False, 'f4':9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[1. 0. 1. 0. 0. 7.]

[1. 0. 0. 1. 1. 2.]

[0. 1. 1. 0. 0. 9.]]

{'f4': 5, 'f2=in': 2, 'f1=NP': 0, 'f1=VP': 1, 'f2=on': 3, 'f3': 4}

-20pt

UNIVERSITY OF

GOTHENBURG

code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{'f1':'NP', 'f2':'in', 'f3':False, 'f4':7},

{'f1':'NP', 'f2':'on', 'f3':True, 'f4':2},

{'f1':'VP', 'f2':'in', 'f3':False, 'f4':9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[1. 0. 1. 0. 0. 7.]

[1. 0. 0. 1. 1. 2.]

[0. 1. 1. 0. 0. 9.]]

{'f4': 5, 'f2=in': 2, 'f1=NP': 0, 'f1=VP': 1, 'f2=on': 3, 'f3': 4}

-20pt

UNIVERSITY OF

GOTHENBURG

CountVectorizers for document representation

I a CountVectorizer converts from documents
I the document is a string or a list of tokens

I just like string features in a DictVectorizer, we use one-hot
encoding so that each word type will correspond to one column

-20pt

UNIVERSITY OF

GOTHENBURG

code example (CountVectorizer)

X = ['example text',

'another text']

vec = CountVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[0 1 1]

[1 0 1]]

{'text': 2, 'example': 1, 'another': 0}

-20pt

UNIVERSITY OF

GOTHENBURG

code example (CountVectorizer)

X = ['example text',

'another text']

vec = CountVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[0 1 1]

[1 0 1]]

{'text': 2, 'example': 1, 'another': 0}

-20pt

UNIVERSITY OF

GOTHENBURG

the vectorizer methods

I fit: look at the data, create the mapping

I transform: convert the data to numbers

I fit_transform = fit + transform

-20pt

UNIVERSITY OF

GOTHENBURG

overview

the perceptron revisited

basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classi�ers

-20pt

UNIVERSITY OF

GOTHENBURG

linear classi�ers

I a linear classi�er is a classi�er that is de�ned in terms of a
scoring function like this

score = w · x

I explanation of the parts:
I x is a vector with features of what we want to classify (e.g.

made with a DictVectorizer)
I w is a vector representing which features the classi�er thinks

are important � this is just like our weight table before
I · is the dot product between the two vectors

I there are two classes: binary classi�cation
I return the �rst class if the score > 0
I . . . otherwise the second class

I the essential idea: features are scored independently

-20pt

UNIVERSITY OF

GOTHENBURG

geometric view

I geometrically, a linear classi�er can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

-20pt

UNIVERSITY OF

GOTHENBURG

training linear classi�ers

I the family of learning algorithms that create linear classi�ers is
quite large

I perceptron, Naive Bayes, support vector machine, logistic
regression/MaxEnt, . . .

I their underlying theoretical motivations can di�er a lot but in
the end they all return a weight vector w

-20pt

UNIVERSITY OF

GOTHENBURG

linear separability

I a dataset is linearly separable if there exists a w that gives
us perfect classi�cation

I theorem: if the dataset is linearly separable, then the
perceptron learning algorithm will �nd a separating w in a
�nite number of steps

-20pt

UNIVERSITY OF

GOTHENBURG

a simple example of linear inseparability

very good Positive
very bad Negative
not good Negative
not bad Positive

-20pt

UNIVERSITY OF

GOTHENBURG

mapping into a larger vector space

I we may add combinations of features to make the dataset
separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
not bad not-bad Positive

I from a geometrical viewpoint: we are creating a feature space
with a higher dimensionality:

I lots of features → LOTS of combinations

-20pt

UNIVERSITY OF

GOTHENBURG

coding a linear classi�er using NumPy

class LinearClassifier(object):

def predict(self, x):

score = x.dot(self.w)

if score >= 0.0:

return self.positive_class

else:

return self.negative_class

-20pt

UNIVERSITY OF

GOTHENBURG

better: handle all instances at the same time

class LinearClassifier(object):

def predict(self, X):

scores = X.dot(self.w)

out = numpy.select([scores>=0.0, scores<0.0],

[self.positive_class,

self.negative_class])

return out

-20pt

UNIVERSITY OF

GOTHENBURG

an illustration of the steps

>>> import numpy

>>> scores = numpy.array([-1, 2, 3, -4, 5])

>>> scores >= 0

array([False, True, True, False, True], dtype=bool)

>>> scores < 0

array([True, False, False, True, False], dtype=bool)

>>> numpy.select([scores >= 0, scores < 0], ["positive", "negative"])

array(['negative', 'positive', 'positive', 'negative', 'positive'],

dtype='|S8')

-20pt

UNIVERSITY OF

GOTHENBURG

perceptron reimplementation in NumPy

class NewPerceptron(LinearClassifier):

def __init__(self, n_iter=10):

self.n_iter = n_iter

def fit(self, X, Y):

... some initialization

X = X.toarray() # convert sparse to dense

n_features = X.shape[1]

self.w = numpy.zeros(n_features)

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = self.w.dot(x)

if score <= 0 and y == self.positive_class:

self.w += x

elif score >= 0 and y == self.negative_class:

self.w -= x

-20pt

UNIVERSITY OF

GOTHENBURG

a reformulation of the perceptron algorithm

I in many machine learning papers, the positive and negative
class are implicitly represented as +1 and -1, respectively

I then the perceptron algorithm can be written a bit more
compactly

class NewPerceptron2(LinearClassifier):

...

def fit(self, X, Y):

... some initialization

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = self.w.dot(x)

if y*score <= 0:

self.w += y*x

-20pt

UNIVERSITY OF

GOTHENBURG

still too slow. . .

I this implementation uses NumPy's dense vectors

I with a large training set with lots of features, it may be better
to use SciPy's sparse vectors

I however, w is a dense vector and I found it a bit tricky to mix
sparse and dense vectors

I this is the best solution I've been able to come up with for the
two operations w · x and w+=x

def sparse_dense_dot(x, w):

return numpy.dot(w[x.indices], x.data)

def add_sparse_to_dense(x, w, xw):

w[x.indices] += xw*x.data

-20pt

UNIVERSITY OF

GOTHENBURG

reimplementation with sparse vectors

class SparsePerceptron(LinearClassifier):

...

def fit(self, X, Y):

... some initialization

for i in range(self.n_iter):

for x, y in zip(X, Y):

score = sparse_dense_dot(x, self.w)

if y*score <= 0:

add_sparse_to_dense(x, self.w, y)

-20pt

UNIVERSITY OF

GOTHENBURG

comparison

I on my computer, with the data set we'll use in assignment 2:
I dense vectors: 17 seconds
I sparse vectors: 3 seconds

-20pt

UNIVERSITY OF

GOTHENBURG

next lecture

I optimization: how to �nd the maximum or minimum of a
mathematical function

I we will use this to introduce two other algorithms for training
linear classi�ers:

I support vector classi�er (LinearSVC)
I logistic regression (LogisticRegression)

I overview of the second assignment

	the perceptron revisited
	basic linear algebra and its implementation in Python
	converting features to numerical vectors
	linear classifiers

