Machine Learning for NLP Lecture 2: Linear classifiers

Richard Johansson

September 2, 2016

math in machine learning

- machine learning is a "mathy" subject...
- the most important branches of mathematics used in ML:
- probability and statistical theory
- linear algebra
- optimization
- in this lecture, we'll see some basic linear algebra and see how that relates to classifiers
- we will also take a look at how linear algebra is implemented in Python and use it to code a learning algorithm

overview

the perceptron revisited

basic linear algebra and its implementation in Python

converting features to numerical vectors
linear classifiers

the perceptron classifier

- the perceptron learning algorithm creates a weight table
- each weight in the table corresponds to a feature
- e.g. "fine" probably has a high positive weight in sentiment analysis
- "boring" a negative weight
- "and" near zero
- classification is carried out by summing the weights for each feature
- one class is associated with positive scores, another with negative scores
- so we can handle two-class problems: binary classification

the perceptron learning algorithm

- start with an empty weight table
- classify according to the current weight table
- each time we misclassify, change the weight table a bit
- if a positive instance was misclassified, add 1 to the weight of each feature in the document
- and conversely ...

a historical note

- the perceptron was invented in 1957 by Frank Rosenblatt
- here's an image (from Wikipedia) of the first implementation
- initially, a lot of hype!
- the realization of its limitations led to a backlash against machine learning in general
- the nail in the coffin was the publication in 1969 of the book Perceptrons by Minsky and Papert

- new hype in the 1980s, and now...

overview

the perceptron revisited
 basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classifiers

vectors

- a tuple consisting of n numbers is called a vector
- the set of all possible tuples of length n is called an n-dimensional vector space
- for instance: $(1,2)$ is a 2-dimensional vector
- they can be interpreted geometrically, either as a point in a coordinate system

- ... or as a direction (e.g. of motion or force)
basic linear algebra
the basic operations on vectors:
- scaling: $\alpha \cdot \boldsymbol{v}=\alpha \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(\alpha \cdot v_{1}, \ldots, \alpha \cdot v_{n}\right)$
- addition and subtraction:

$$
\boldsymbol{v}+\boldsymbol{w}=\left(v_{1}, \ldots, v_{n}\right)+\left(w_{1}, \ldots, w_{n}\right)=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)
$$

- scalar product or dot product:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\left(v_{1}, \ldots, v_{n}\right) \cdot\left(w_{1}, \ldots, w_{n}\right)=v_{1} \cdot w_{1}+\ldots+v_{n} \cdot w_{n}
$$

- vector length or norm:

$$
|\boldsymbol{v}|=\left|\left(v_{1}, \ldots, v_{n}\right)\right|=\sqrt{v_{1} \cdot v_{1}+\ldots+v_{n} \cdot v_{n}}=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}
$$

examples: basic linear algebra

- $0.5 \cdot(1,0,0,1)=(0.5,0,0,0.5)$
- $(1,0,0,1)+(0,0,1,1)=(1,0,1,2)$
- $(1,0,0,1) \cdot(0,0,1,1)=1 \cdot 0+0 \cdot 0+0 \cdot 1+1 \cdot 1=1$
- $|(1,0,0,1)|=\sqrt{1 \cdot 1+0 \cdot 0+0 \cdot 0+1 \cdot 1}=\sqrt{2}$

beware the ambiguous notation!

- multiplying two numbers: $a \cdot b$ or $a b$
- scaling a vector $a \cdot v$ or $a v$
- dot product between two vectors: $\boldsymbol{v} \cdot \boldsymbol{w}$ or $\boldsymbol{v w}$
- sometimes, numbers and vectors are distinguished by setting the vectors in boldface $(\boldsymbol{x}, \boldsymbol{v})$ or by arrow notation (\vec{x}, \vec{v})

simple linear algebra implementation

- naively, we could implement the basic vector operations in Python:
- def scale(a, v):
return [a*vk for vk in v]
- def vsum(v, w):
return [vk+wk for (vk,wk) in $\operatorname{zip}(v, w)]$
- def $\operatorname{dot}(\mathrm{v}, \mathrm{w}):$
return sum ([vk*wk for (vk,wk) in $\operatorname{zip}(v, w)])$
- def vlength(v):
return math.sqrt (dot(v, v))
- however, this is inefficient if the dimension of the vector space is high

linear algebra implementation: better

- NumPy and SciPy are Python libraries containing many mathematical functions
- they are interlinked and typically installed together
- scikit-learn relies on both of them
- they use specialized math libraries to make computations faster
- e.g. BLAS for your processor or graphics card
- example with a 100 million dimension random vector:
- my simple function $\operatorname{dot}(\mathrm{v}, \mathrm{v})$ takes 81 seconds
- numpy.dot(v, v) takes 0.15 seconds

NumPy linear algebra examples

```
>>> import numpy
>>> v1 = numpy.array([1, 0, 0, 1, 0])
>>> v2 = numpy.array([0, 2, 1, -2, 1])
>>> v1
array([1, 0, 0, 1, 0])
>>> v2
array([ 0, 2, 1, -2, 1])
>>> v1 + v2
array([ 1, 2, 1, -1, 1])
>>> 100 * v1
array([100, 0, 0, 100, 0])
>>> numpy.dot(v1, v2)
-2
>>> v1.dot(v2)
-2
>>> numpy.linalg.norm(v1)
1.4142135623730951
```


sparse vectors

- in NLP, feature vectors are a bit peculiar compared to some other fields (e.g. speech and image processing):
- the vector spaces often have a very high dimension
- in each feature vector, most of the entries are zero
- ["prices", "fall"] $\rightarrow(0,1,0, \ldots, 0,1,0, \ldots, 0,0,0)$
- sparse vector: keep track of non-zero entries only: $[(2,1),(10,1)]$
- in some cases, this saves memory and is much faster

sparse vectors in Python

- SciPy includes five different types of sparse vectors
- in scikit-learn, DictVectorizer and CountVectorizer create vectors of the class csr_matrix
- more on this when we discuss classifier implementation
- see also http:
//docs.scipy.org/doc/scipy/reference/sparse.html

matrices

- a matrix is a 2-dimensional array of numbers: a "list of lists"

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & 1 & 0
\end{array}\right]
$$

- note that a vector can be seen as a special case of a matrix: a row or a column

$$
\left[\begin{array}{lll}
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

reasons for using matrices

- matrices have a geometric interpretation, as we'll see in a moment
- however, in this context we mainly care about them to speed up our programs
- we can see matrices as collections of vectors
- in Python, it's more efficient to carry out a small number of operations on large matrices than on many small vectors

basic matrix operations

the basic elementwise operations on matrices, similar to what we did for the vectors:

- scaling: multiply all the cells by some number

$$
10 \cdot\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]
$$

- addition / subtraction:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]=\left[\begin{array}{ll}
11 & 22 \\
33 & 44
\end{array}\right]
$$

matrix multiplication

- matrix multiplication is an extension of the dot product for vectors
- each cell in the new matrix is computed as the dot product between a row and a column:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]=[\square
$$

matrix multiplication

- matrix multiplication is an extension of the dot product for vectors
- each cell in the new matrix is computed as the dot product between a row and a column:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]=\left[\begin{array}{l}
70
\end{array}\right]
$$

matrix multiplication

- matrix multiplication is an extension of the dot product for vectors
- each cell in the new matrix is computed as the dot product between a row and a column:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]=\left[\begin{array}{ll}
70 & 100
\end{array}\right]
$$

matrix multiplication

- matrix multiplication is an extension of the dot product for vectors
- each cell in the new matrix is computed as the dot product between a row and a column:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]=\left[\begin{array}{cc}
70 & 100 \\
150 & 220
\end{array}\right]
$$

geometric interpretation of matrix multiplication

- as mentioned, we use matrix multiplication (and other matrix operations) mainly for efficiency in this course
- a matrix multiplication instead of many dot products
- however, in geometry we can use matrix multiplication can be used to express many useful transformations
- scaling
- rotation
- projection from 3D to 2D
- . .

matrix multiplication in NumPy

```
A = numpy.array([[1, 2], [3, 4]])
B = numpy.array([[10, 20], [30, 40]])
print(A.dot(B))
```


overview

the perceptron revisited
 basic linear algebra and its implementation in Python

converting features to numerical vectors

linear classifiers

the first step: mapping features to numerical vectors

- scikit-learn's learning methods works with features as numbers, not strings
- they can't directly use the feature dicts we have stored in X
- converting from string to numbers is the purpose of these lines:

```
vec = DictVectorizer()
Xe = vec.fit_transform(X)
```

$$
\begin{aligned}
& \text { X }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{cccccc}
& X e \\
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
& & \cdots & \\
& & \cdots & \\
0 & 1 & 0 & 0 & \cdots
\end{array}\right]
\end{aligned}
$$

types of vectorizers

- a DictVectorizer converts from attribute-value dicts:

$$
\begin{aligned}
& \text { X } \\
& \text { Xe }
\end{aligned}
$$

- a CountVectorizer converts from texts (after applying a tokenizer) or lists:
- a TfidfVectorizer is like a CountVectorizer, but also uses TF*IDF

what goes on in a DictVectorizer?

- each feature corresponds to one or more columns in the output matrix
- easy case: boolean and numerical features:

$$
\begin{aligned}
& \text { X }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Xe }
\end{aligned}
$$

what goes on in a DictVectorizer?

- each feature corresponds to one or more columns in the output matrix
- easy case: boolean and numerical features:

$$
\left.\begin{array}{c}
X \\
{\left[\begin{array}{cc}
\{ & \text { 'f1':False, 'f2'::7 } \\
\text { \{ 'f1':True, } & \text { 'f2':2 } \\
\{\text { 'f1':False, } & \text { 'f2':9 }
\end{array}\right]}
\end{array}\right] \quad\left[\begin{array}{cc}
X e \\
0 & 7 \\
1 & 2 \\
0 & 9
\end{array}\right]
$$

- for string features, we reserve one column for each possible value: one-hot encoding
- that is, we convert to booleans

$$
\begin{aligned}
& \text { X }
\end{aligned}
$$

code example (DictVectorizer)

```
from sklearn.feature_extraction import DictVectorizer
X = [{'f1':'NP', 'f2':'in', 'f3':False, 'f4':7},
    {'f1':'NP', 'f2':'on', 'f3':True, 'f4':2},
    {'f1':'VP', 'f2':'in', 'f3':False, 'f4':9}]
vec = DictVectorizer()
Xe = vec.fit_transform(X)
print(Xe.toarray())
print(vec.vocabulary_)
```


code example (DictVectorizer)

```
from sklearn.feature_extraction import DictVectorizer
X = [{'f1':'NP', 'f2':'in', 'f3':False, 'f4':7},
    {'f1':'NP', 'f2':'on', 'f3':True, 'f4':2},
    {'f1':'VP', 'f2':'in', 'f3':False, 'f4':9}]
vec = DictVectorizer()
Xe = vec.fit_transform(X)
print(Xe.toarray())
print(vec.vocabulary_)
```

the result:

```
[[ 1. 0. 1. 0. 0. 7.]
    [ 1. 0. 0. 1. 1. 2.]
    [ 0. 1. 1. 0. 0. 9.]]
{'f4': 5, 'f2=in': 2, 'f1=NP': 0, 'f1=VP': 1, 'f2=on': 3, 'f3': 4}
```


CountVectorizers for document representation

- a CountVectorizer converts from documents
- the document is a string or a list of tokens
- just like string features in a DictVectorizer, we use one-hot encoding so that each word type will correspond to one column

code example (CountVectorizer)

```
X = ['example text',
    'another text']
vec = CountVectorizer()
Xe = vec.fit_transform(X)
print(Xe.toarray())
print(vec.vocabulary_)
```


code example (CountVectorizer)

```
X = ['example text',
    'another text']
vec = CountVectorizer()
Xe = vec.fit_transform(X)
print(Xe.toarray())
print(vec.vocabulary_)
```

the result:
[$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$
\{'text': 2, 'example': 1, 'another': 0\}

the vectorizer methods

- fit: look at the data, create the mapping
- transform: convert the data to numbers
- fit_transform $=$ fit + transform

overview

```
the perceptron revisited
basic linear algebra and its implementation in Python
converting features to numerical vectors
```

linear classifiers

linear classifiers

- a linear classifier is a classifier that is defined in terms of a scoring function like this

$$
\text { score }=\boldsymbol{w} \cdot \boldsymbol{x}
$$

- explanation of the parts:
- x is a vector with features of what we want to classify (e.g. made with a DictVectorizer)
- \boldsymbol{w} is a vector representing which features the classifier thinks are important - this is just like our weight table before
- . is the dot product between the two vectors
- there are two classes: binary classification
- return the first class if the score >0
- ... otherwise the second class
- the essential idea: features are scored independently

geometric view

- geometrically, a linear classifier can be interpreted as separating the vector space into two regions with a line (plane, hyperplane)

training linear classifiers

- the family of learning algorithms that create linear classifiers is quite large
- perceptron, Naive Bayes, support vector machine, logistic regression/MaxEnt, ...
- their underlying theoretical motivations can differ a lot but in the end they all return a weight vector \boldsymbol{w}

linear separability

- a dataset is linearly separable if there exists a \boldsymbol{w} that gives us perfect classification

- theorem: if the dataset is linearly separable, then the perceptron learning algorithm will find a separating \boldsymbol{w} in a finite number of steps
a simple example of linear inseparability

very good Positive
very bad Negative
not good Negative not bad Positive

mapping into a larger vector space

- we may add combinations of features to make the dataset separable:

$$
\begin{array}{cc}
\text { very good very-good } & \text { Positive } \\
\text { very bad very-bad } & \text { Negative } \\
\text { not good not-good } & \text { Negative } \\
\text { not bad not-bad } & \text { Positive }
\end{array}
$$

- from a geometrical viewpoint: we are creating a feature space with a higher dimensionality:

- lots of features \rightarrow LOTS of combinations

coding a linear classifier using NumPy

```
class LinearClassifier(object):
    def predict(self, x):
        score = x.dot(self.w)
        if score >= 0.0:
            return self.positive_class
        else:
            return self.negative_class
```


better: handle all instances at the same time

```
class LinearClassifier(object):
    def predict(self, X):
        scores = X.dot(self.w)
        out = numpy.select([scores>=0.0, scores<0.0],
            [self.positive_class,
            self.negative_class])
    return out
```


an illustration of the steps

```
>>> import numpy
>>> scores = numpy.array([-1, 2, 3, -4, 5])
>>> scores >= 0
array([False, True, True, False, True], dtype=bool)
>>> scores < 0
array([ True, False, False, True, False], dtype=bool)
>>> numpy.select([scores >= 0, scores < 0], ["positive", "negative"])
array(['negative', 'positive', 'positive', 'negative', 'positive'],
    dtype='|S8')
```


perceptron reimplementation in NumPy

```
class NewPerceptron(LinearClassifier):
def __init__(self, n_iter=10):
def fit(self, X, Y):
    # ... some initialization
    X = X.toarray() # convert sparse to dense
    n_features = X.shape[1]
    self.w = numpy.zeros( n_features )
    for i in range(self.n_iter):
        for x, y in zip(X, Y):
            score = self.w.dot(x)
            if score <= O and y == self.positive_class:
            self.w += x
                elif score >= O and y == self.negative_class:
            self.w -= x
```


a reformulation of the perceptron algorithm

- in many machine learning papers, the positive and negative class are implicitly represented as +1 and -1 , respectively
- then the perceptron algorithm can be written a bit more compactly

```
class NewPerceptron2(LinearClassifier):
    # ...
    def fit(self, X, Y):
    # ... some initialization
    for i in range(self.n_iter):
        for x, y in zip(X, Y):
            score = self.w.dot(x)
            if y*score <= 0:
            self.w += y*x
```


still too slow. . .

- this implementation uses NumPy's dense vectors
- with a large training set with lots of features, it may be better to use SciPy's sparse vectors
- however, \boldsymbol{w} is a dense vector and I found it a bit tricky to mix sparse and dense vectors
- this is the best solution I've been able to come up with for the two operations $\boldsymbol{w} \cdot \boldsymbol{x}$ and $\boldsymbol{w}+=\boldsymbol{x}$

```
def sparse_dense_dot(x, w):
    return numpy.dot(w[x.indices], x.data)
def add_sparse_to_dense(x, w, xw):
    w[x.indices] += xw*x.data
```


reimplementation with sparse vectors

class SparsePerceptron(LinearClassifier):

```
# ...
def fit(self, X, Y):
    # ... some initialization
    for i in range(self.n_iter):
        for x, y in zip(X, Y):
            score = sparse_dense_dot(x, self.w)
            if y*score <= 0:
            add_sparse_to_dense(x, self.w, y)
```


comparison

- on my computer, with the data set we'll use in assignment 2 :
- dense vectors: 17 seconds
- sparse vectors: 3 seconds

next lecture

- optimization: how to find the maximum or minimum of a mathematical function
- we will use this to introduce two other algorithms for training linear classifiers:
- support vector classifier (LinearSVC)
- logistic regression (LogisticRegression)
- overview of the second assignment

