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math in machine learning

» machine learning is a “mathy” subject. ..
» the most important branches of mathematics used in ML:

» probability and statistical theory
» linear algebra
> optimization

> in this lecture, we'll see some basic linear algebra and see
how that relates to classifiers

» we will also take a look at how linear algebra is implemented in
Python and use it to code a learning algorithm
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overview

the perceptron revisited
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the perceptron classifier

» the perceptron learning algorithm creates a weight table
» each weight in the table corresponds to a feature

» e.g. "fine" probably has a high positive weight in sentiment
analysis

» "boring" a negative weight

» "and" near zero

» classification is carried out by summing the weights for each
feature

» one class is associated with positive scores, another with
negative scores

» so we can handle two-class problems: binary classification
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the perceptron learning algorithm

> start with an empty weight table
» classify according to the current weight table

» each time we misclassify, change the weight table a bit

» if a positive instance was misclassified, add 1 to the weight of
each feature in the document
» and conversely . ..
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a historical note

» the perceptron was invented in 1957 by
Frank Rosenblatt

> here's an image (from Wikipedia) of the
first implementation
» initially, a lot of hype!
> the realization of its limitations led to a
backlash against machine learning in general

» the nail in the coffin was the publication in
1969 of the book Perceptrons by Minsky
and Papert

> new hype in the 1980s, and now. ..
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overview

basic linear algebra and its implementation in Python
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vectors

> a tuple consisting of n numbers is called a vector

» the set of all possible tuples of length n is called an
n-dimensional vector space

» for instance: (1,2) is a 2-dimensional vector

» they can be interpreted geometrically, either as a point in a
coordinate system

1 2

» ...or as a direction (e.g. of motion or force)
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basic linear algebra

the basic operations on vectors:

» scaling: a-v=a-(vi,...,vp) = (- v1,...,- vp)
» addition and subtraction:

vtw = (vi,...,vp)+(wi,...,wp) = (vi +wi,...,vp+ wp)
» scalar product or dot product:

vew=(vi,...,Vn) (Wi,...,Wp) =v1-wi+ ...+ vy wp
» vector length or norm:
lv|=1|(vi,...,vp)| =+vv1 w1 +. nVp=+/V-Vv
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examples: basic linear algebra

v

0.5-(1,0,0,1) = (0.5,0,0,0.5)
(1,0,0,1) 4 (0,0,1,1) = (1,0,1,2)
(1,0,0,1)-(0,0,1,1) =1-0+0-0+0-1+1-1=1
1(1,0,0,1)] =v1-1+0-0+0-0+1-1=+2

v

v

v
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beware the ambiguous notation!

v

multiplying two numbers: a- b or ab

v

scaling a vector a- v or av

v

dot product between two vectors: v - w or vw

» sometimes, numbers and vectors are distinguished by setting
the vectors in boldface (x, v) or by arrow notation (X, V)
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simple linear algebra implementation

> naively, we could implement the basic vector operations in
Python:
» def scale(a, v):
return [a*vk for vk in v]
» def vsum(v, w):
return [vk+wk for (vk,wk) in zip(v, w)]
» def dot(v, w):
return sum([vk*wk for (vk,wk) in zip(v, w)])
» def vlength(v):
return math.sqrt(dot(v, v))

» however, this is inefficient if the dimension of the vector space
is high
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linear algebra implementation: better

» NumPy and SciPy are Python libraries containing many
mathematical functions
» they are interlinked and typically installed together
» scikit-learn relies on both of them
» they use specialized math libraries to make computations
faster
» e.g. BLAS for your processor or graphics card
» example with a 100 million dimension random vector:

» my simple function dot (v, v) takes 81 seconds
» numpy.dot (v, v) takes 0.15 seconds
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NumPy linear algebra examples

>>> import numpy

>>> v1 = numpy.array([i, O, 0, 1, 0])
>>> v2 = numpy.array([0, 2, 1, -2, 1])
>>> vl

array([1, 0, 0, 1, 01)

>>> v2

array([ 0, 2, 1, -2, 11)

>>> vl + v2

array([ 1, 2, 1, -1, 11D

>>> 100 * v1

array([100, 0, 0, 100, 01)

>>> numpy.dot(vl, v2)

-2

>>> vi.dot(v2)

-2

>>> numpy.linalg.norm(vl)
1.4142135623730951
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sparse vectors

» in NLP, feature vectors are a bit peculiar compared to some
other fields (e.g. speech and image processing):

» the vector spaces often have a very high dimension
> in each feature vector, most of the entries are zero
> ["prices", "fall"] - (0, 1,0,...,0,1,0,...,0,0,0)

» sparse vector: keep track of non-zero entries only:
(2, 1), (10, 1]

> in some cases, this saves memory and is much faster
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sparse vectors in Python

» SciPy includes five different types of sparse vectors

> in scikit-learn, DictVectorizer and CountVectorizer create
vectors of the class csr_matrix

» more on this when we discuss classifier implementation

> see also http:
//docs.scipy.org/doc/scipy/reference/sparse.html
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http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

matrices

» a matrix is a 2-dimensional array of numbers: a “list of lists”
1 20
-2 10

» note that a vector can be seen as a special case of a matrix: a

row or a column

-2
[—2 1 0] 1
0
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reasons for using matrices

> matrices have a geometric interpretation, as we'll see in a
moment
» however, in this context we mainly care about them to speed
up our programs
» we can see matrices as collections of vectors
» in Python, it's more efficient to carry out a small number of
operations on large matrices than on many small vectors
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basic matrix operations

the basic elementwise operations on matrices, similar to what we
did for the vectors:

» scaling: multiply all the cells by some number
1 2 10 20
10'[3 4}_[30 40]
» addition / subtraction:

12+1020_1122
3 4 30 40 | | 33 44
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matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

ERIRE R .
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matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

HIRET IR
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matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

HHEEHE
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matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

1 2} |10 20 | 70 100
3 4 30 40 | | 150 220
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geometric interpretation of matrix multiplication

» as mentioned, we use matrix multiplication (and other matrix
operations) mainly for efficiency in this course

» a matrix multiplication instead of many dot products

> however, in geometry we can use matrix multiplication can be
used to express many useful transformations
» scaling
> rotation
» projection from 3D to 2D
>

UNIVERSITY OF
GOTHENBURG



matrix multiplication in NumPy

=
1]

numpy.array([[1, 2], [3, 411)

B

numpy.array([[10, 20], [30, 40]1)

print (A.dot(B))



overview

converting features to numerical vectors
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the first step: mapping features to numerical vectors

» scikit-learn’s learning methods works with features as
numbers, not strings

» they can't directly use the feature dicts we have stored in X
» converting from string to numbers is the purpose of these lines:

vec = DictVectorizer()
Xe = vec.fit_transform(X)

X Xe
{ 'label':'NP', ... ¥ 1000 .
{ 'label':'PP', ... } 0100 .
00160 .

{ 'label':'S', ... }

{ 'label':'PP', ... } 0100 ...

UNIVERSITY OF
GOTHENBURG



types of vectorizers

» a DictVectorizer converts from attribute—value dicts:

X
{ 'label':'NP', ... }
{ 'label':'PP', ... }
{ 'label':'s', ... }
{ 'label‘::l;l;', Lo )

» a CountVectorizer converts from texts (after applying a
tokenizer) or lists:

X Xe
"this is a text" 111100 .
"here is another text" 610111,
"a cat on a mat" 002000 ...

» a TfidfVectorizer is like a CountVectorizer, but also uses
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what goes on in a DictVectorizer?
» each feature corresponds to one or more columns in the output
matrix
» easy case: boolean and numerical features:

X Xe
r "f1':False, 'f2':7 }

0
{ *f1':True, 'f2':2} » 1
{ 'fl':False, 'f2':9 } 0
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what goes on in a DictVectorizer?

» each feature corresponds to one or more columns in the output

matrix

2

> easy case: boolean and numerical features:
X

{ 'f1':False, 'f2':7 }
{ 'fl':True, 'f2':2}
{ 'fl':False, 'f2':9 }

fl

(ol SN ol

O N N

» for string features, we reserve one column for each possible
value: one-hot encoding
» that is, we convert to booleans

X Xe
{ 'f1':'NP', 'f2':'in' }

NP, : 1
{ 'f1Ne, 'f2':'on'j% --!'>» [1
i 0

{ 'fL':'VP', 'f2':'in' }

; ' on
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code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{’£1’:°NP>, ’£27:’in’, ’£3’:False, '£4’:7},
{°£1°:°NP>, °£2°:’0on’, ’£3’:True, ’£4°:2%},
{>f1°:°yP’, °f2’:’in’, ’f3’:False, ’f4’:9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)
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code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{’£1’:°NP>, ’£27:’in’, ’£3’:False, '£4’:7},
{°£1°:°NP>, °£2°:’0on’, ’£3’:True, ’£4°:2%},
{>f1°:°yP’, °f2’:’in’, ’f3’:False, ’f4’:9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[1. o0. 1. oO. 7.1
[1. 0. 0. 1. 1. 2.]
[o. 1. 1. oO. 9.1]

{°f4’: 5, ’f2=in’: 2, ’f1=NP’: 0, ’f1=VP’: 1, ’f2=on’: 3, ’£3’:
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CountVectorizers for document representation

» a CountVectorizer converts from documents
» the document is a string or a list of tokens

> just like string features in a DictVectorizer, we use one-hot
encoding so that each word type will correspond to one column

"example text" ’
"another text" 1 0 1

another text
example
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code example (CountVectorizer)

X = [’example text’,
’another text?’]

vec = CountVectorizer()
Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)
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code example (CountVectorizer)

X = [’example text’,
’another text?’]

vec = CountVectorizer()
Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[01 1]
[1 0 111

{’text’: 2, ’example’: 1, ’another’: 0}
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the vectorizer methods

» fit: look at the data, create the mapping
» transform: convert the data to numbers

» fit_transform = fit + transform
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overview

linear classifiers
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linear classifiers

» a linear classifier is a classifier that is defined in terms of a
scoring function like this

sCore = W - X

» explanation of the parts:

> x is a vector with features of what we want to classify (e.g.
made with a DictVectorizer)
» w is a vector representing which features the classifier thinks
are important — this is just like our weight table before
» - is the dot product between the two vectors
» there are two classes: binary classification

» return the first class if the score > 0
» .. .otherwise the second class

> the essential idea: features are scored independently
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geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)
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training linear classifiers

» the family of learning algorithms that create linear classifiers is
quite large
» perceptron, Naive Bayes, support vector machine, logistic
regression/MaxEnt, . ..
» their underlying theoretical motivations can differ a lot but in
the end they all return a weight vector w
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linear separability

> a dataset is linearly separable if there exists a w that gives
us perfect classification

» theorem: if the dataset is linearly separable, then the
perceptron learning algorithm will find a separating w in a
finite number of steps
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a simple example of linear inseparability

very good  Positive
very bad  Negative
not good Negative

not bad  Positive
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mapping into a larger vector space

» we may add combinations of features to make the dataset

separable:

very good very-good  Positive
very bad very-bad  Negative
not good not-good  Negative
Positive

not bad not-bad
» from a geometrical viewpoint: we are creating a feature space

with a higher dimensionality:

> lots of features — LOTS of combinations
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coding a linear classifier using NumPy

class LinearClassifier(object):
def predict(self, x):
score = x.dot(self.w)
if score >= 0.0:
return self.positive_class
else:
return self.negative_class
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better: handle all instances at the same time

class LinearClassifier(object):
def predict(self, X):
scores = X.dot(self.w)
out = numpy.select([scores>=0.0, scores<0.0],
[self.positive_class,
self.negative_class])
return out
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an illustration of the steps

>>> import numpy
>>> scores = numpy.array([-1, 2, 3, -4, 5])

>>> scores >= 0
array([False, True, True, False, True], dtype=bool)

>>> scores < 0
array([ True, False, False, True, False], dtype=bool)

>>> numpy.select{([scores >= 0, scores < 0], ["positive", "negative"])

array([’negative’, ’positive’, ’positive’, ’negative’, ’positive’],
dtype=’[88?)
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perceptron reimplementation in NumPy

class NewPerceptron(LinearClassifier):

def __init__(self, n_iter=10):
self.n_iter = n_iter

def fit(self, X, Y):
# ... some initialization

X = X.toarray() # convert sparse to dense
n_features = X.shape[1]

self.w = numpy.zeros( n_features )

for i in range(self.n_iter):
for x, y in zip(X, Y):

score = self.w.dot(x)

if score <= 0 and y == self.positive_class:
self.w += x

elif score >= 0 and y == self.negative_class:
self.w -= x
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a reformulation of the perceptron algorithm

» in many machine learning papers, the positive and negative
class are implicitly represented as +1 and -1, respectively

» then the perceptron algorithm can be written a bit more
compactly

class NewPerceptron2(LinearClassifier):
# ...
def fit(self, X, Y):
# ... some initialization
for i in range(self.n_iter):
for x, y in zip(X, Y):
score = self.w.dot(x)
if y*score <= 0:
self.w += y*x
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still too slow. . .

UNIVERSITY OF
GOTHENBURG

this implementation uses NumPy’s dense vectors

with a large training set with lots of features, it may be better
to use SciPy’s sparse vectors

however, w is a dense vector and | found it a bit tricky to mix
sparse and dense vectors

this is the best solution I've been able to come up with for the
two operations w - x and w+=x

def sparse_dense_dot(x, w):
return numpy.dot(w[x.indices], x.data)

def add_sparse_to_dense(x, w, xw):
w[x.indices] += xw*x.data



reimplementation with sparse vectors

class SparsePerceptron(LinearClassifier):
# ...

def fit(self, X, Y):
# ... some initialization

for i in range(self.n_iter):
for x, y in zip(X, Y):

score = sparse_dense_dot(x, self.w)

if y*score <= 0:
add_sparse_to_dense(x, self.w, y)
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comparison

» on my computer, with the data set we'll use in assignment 2:

» dense vectors: 17 seconds
» sparse vectors: 3 seconds
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next lecture

» optimization: how to find the maximum or minimum of a
mathematical function

» we will use this to introduce two other algorithms for training
linear classifiers:

» support vector classifier (LinearSVC)
» logistic regression (LogisticRegression)

» overview of the second assignment
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