Machine Learning for NLP
Lecture 2: Linear classifiers

UNIVI ITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

September 2, 2016

math in machine learning

» machine learning is a “mathy” subject. ..
» the most important branches of mathematics used in ML:

» probability and statistical theory
» linear algebra
> optimization

> in this lecture, we'll see some basic linear algebra and see
how that relates to classifiers

» we will also take a look at how linear algebra is implemented in
Python and use it to code a learning algorithm

UNIVERSITY OF
GOTHENBURG

overview

the perceptron revisited

UNIVERSITY OF
GOTHENBURG

the perceptron classifier

» the perceptron learning algorithm creates a weight table
» each weight in the table corresponds to a feature

» e.g. "fine" probably has a high positive weight in sentiment
analysis

» "boring" a negative weight

» "and" near zero

» classification is carried out by summing the weights for each
feature

» one class is associated with positive scores, another with
negative scores

» so we can handle two-class problems: binary classification

UNIVERSITY OF
GOTHENBURG

the perceptron learning algorithm

> start with an empty weight table
» classify according to the current weight table

» each time we misclassify, change the weight table a bit

» if a positive instance was misclassified, add 1 to the weight of
each feature in the document
» and conversely . ..

UNIVERSITY OF
GOTHENBURG

a historical note

» the perceptron was invented in 1957 by
Frank Rosenblatt

> here's an image (from Wikipedia) of the
first implementation
» initially, a lot of hype!
> the realization of its limitations led to a
backlash against machine learning in general

» the nail in the coffin was the publication in
1969 of the book Perceptrons by Minsky
and Papert

> new hype in the 1980s, and now. ..

UNIVERSITY OF
GOTHENBURG

overview

basic linear algebra and its implementation in Python

UNIVERSITY OF
GOTHENBURG

vectors

> a tuple consisting of n numbers is called a vector

» the set of all possible tuples of length n is called an
n-dimensional vector space

» for instance: (1,2) is a 2-dimensional vector

» they can be interpreted geometrically, either as a point in a
coordinate system

1 2

» ...or as a direction (e.g. of motion or force)

UNIVERSITY OF
GOTHENBURG

basic linear algebra

the basic operations on vectors:

» scaling: a-v=a-(vi,...,vp) = (- v1,...,- vp)
» addition and subtraction:

vtw = (vi,...,vp)+(wi,...,wp) = (vi +wi,...,vp+ wp)
» scalar product or dot product:

vew=(vi,...,Vn) (Wi,...,Wp) =v1-wi+ ...+ vy wp
» vector length or norm:
lv|=1|(vi,...,vp)| =+vv1 w1 +. nVp=+/V-Vv

E unwersiTy oF
S8 GOTHENBURG

examples: basic linear algebra

v

0.5-(1,0,0,1) = (0.5,0,0,0.5)
(1,0,0,1) 4 (0,0,1,1) = (1,0,1,2)
(1,0,0,1)-(0,0,1,1) =1-0+0-0+0-1+1-1=1
1(1,0,0,1)] =v1-1+0-0+0-0+1-1=+2

v

v

v

UNIVERSITY OF
GOTHENBURG

beware the ambiguous notation!

v

multiplying two numbers: a- b or ab

v

scaling a vector a- v or av

v

dot product between two vectors: v - w or vw

» sometimes, numbers and vectors are distinguished by setting
the vectors in boldface (x, v) or by arrow notation (X, V)

UNIVERSITY OF
GOTHENBURG

simple linear algebra implementation

> naively, we could implement the basic vector operations in
Python:
» def scale(a, v):
return [a*vk for vk in v]
» def vsum(v, w):
return [vk+wk for (vk,wk) in zip(v, w)]
» def dot(v, w):
return sum([vk*wk for (vk,wk) in zip(v, w)])
» def vlength(v):
return math.sqrt(dot(v, v))

» however, this is inefficient if the dimension of the vector space
is high

UNIVERSITY OF
GOTHENBURG

linear algebra implementation: better

» NumPy and SciPy are Python libraries containing many
mathematical functions
» they are interlinked and typically installed together
» scikit-learn relies on both of them
» they use specialized math libraries to make computations
faster
» e.g. BLAS for your processor or graphics card
» example with a 100 million dimension random vector:

» my simple function dot (v, v) takes 81 seconds
» numpy.dot (v, v) takes 0.15 seconds

UNIVERSITY OF
GOTHENBURG

NumPy linear algebra examples

>>> import numpy

>>> v1 = numpy.array([i, O, 0, 1, 0])
>>> v2 = numpy.array([0, 2, 1, -2, 1])
>>> vl

array([1, 0, 0, 1, 01)

>>> v2

array([0, 2, 1, -2, 11)

>>> vl + v2

array([1, 2, 1, -1, 11D

>>> 100 * v1

array([100, 0, 0, 100, 01)

>>> numpy.dot(vl, v2)

-2

>>> vi.dot(v2)

-2

>>> numpy.linalg.norm(vl)
1.4142135623730951

UNIVERSITY OF
GOTHENBURG

sparse vectors

» in NLP, feature vectors are a bit peculiar compared to some
other fields (e.g. speech and image processing):

» the vector spaces often have a very high dimension
> in each feature vector, most of the entries are zero
> ["prices", "fall"] - (0, 1,0,...,0,1,0,...,0,0,0)

» sparse vector: keep track of non-zero entries only:
(2, 1), (10, 1]

> in some cases, this saves memory and is much faster

UNIVERSITY OF
GOTHENBURG

sparse vectors in Python

» SciPy includes five different types of sparse vectors

> in scikit-learn, DictVectorizer and CountVectorizer create
vectors of the class csr_matrix

» more on this when we discuss classifier implementation

> see also http:
//docs.scipy.org/doc/scipy/reference/sparse.html

UNIVERSITY OF
GOTHENBURG

http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

matrices

» a matrix is a 2-dimensional array of numbers: a “list of lists”
1 20
-2 10

» note that a vector can be seen as a special case of a matrix: a

row or a column

-2
[—2 1 0] 1
0

UNIVERSITY OF
GOTHENBURG

reasons for using matrices

> matrices have a geometric interpretation, as we'll see in a
moment
» however, in this context we mainly care about them to speed
up our programs
» we can see matrices as collections of vectors
» in Python, it's more efficient to carry out a small number of
operations on large matrices than on many small vectors

UNIVERSITY OF
GOTHENBURG

basic matrix operations

the basic elementwise operations on matrices, similar to what we
did for the vectors:

» scaling: multiply all the cells by some number
1 2 10 20
10'[3 4}_[30 40]
» addition / subtraction:

12+1020_1122
3 4 30 40 | | 33 44

UNIVERSITY OF
GOTHENBURG

matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

ERIRE R .

UNIVERSITY OF
GOTHENBURG

matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

HIRET IR

UNIVERSITY OF
GOTHENBURG

matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

HHEEHE

UNIVERSITY OF
GOTHENBURG

matrix multiplication

» matrix multiplication is an extension of the dot product for
vectors

» each cell in the new matrix is computed as the dot product
between a row and a column:

1 2} |10 20 | 70 100
3 4 30 40 | | 150 220

UNIVERSITY OF
GOTHENBURG

geometric interpretation of matrix multiplication

» as mentioned, we use matrix multiplication (and other matrix
operations) mainly for efficiency in this course

» a matrix multiplication instead of many dot products

> however, in geometry we can use matrix multiplication can be
used to express many useful transformations
» scaling
> rotation
» projection from 3D to 2D
>

UNIVERSITY OF
GOTHENBURG

matrix multiplication in NumPy

=
1]

numpy.array([[1, 2], [3, 411)

B

numpy.array([[10, 20], [30, 40]1)

print (A.dot(B))

overview

converting features to numerical vectors

UNIVERSITY OF
GOTHENBURG

the first step: mapping features to numerical vectors

» scikit-learn’s learning methods works with features as
numbers, not strings

» they can't directly use the feature dicts we have stored in X
» converting from string to numbers is the purpose of these lines:

vec = DictVectorizer()
Xe = vec.fit_transform(X)

X Xe
{ 'label':'NP', ... ¥ 1000 .
{ 'label':'PP', ... } 0100 .
00160 .

{ 'label':'S', ... }

{ 'label':'PP', ... } 0100 ...

UNIVERSITY OF
GOTHENBURG

types of vectorizers

» a DictVectorizer converts from attribute—value dicts:

X
{ 'label':'NP', ... }
{ 'label':'PP', ... }
{ 'label':'s', ... }
{ 'label‘::l;l;', Lo)

» a CountVectorizer converts from texts (after applying a
tokenizer) or lists:

X Xe
"this is a text" 111100 .
"here is another text" 610111,
"a cat on a mat" 002000 ...

» a TfidfVectorizer is like a CountVectorizer, but also uses

UNIVERSITY OF
GOTHENBURG

what goes on in a DictVectorizer?
» each feature corresponds to one or more columns in the output
matrix
» easy case: boolean and numerical features:

X Xe
r "f1':False, 'f2':7 }

0
{ *f1':True, 'f2':2} » 1
{ 'fl':False, 'f2':9 } 0

UNIVERSITY OF
GOTHENBURG

what goes on in a DictVectorizer?

» each feature corresponds to one or more columns in the output

matrix

2

> easy case: boolean and numerical features:
X

{ 'f1':False, 'f2':7 }
{ 'fl':True, 'f2':2}
{ 'fl':False, 'f2':9 }

fl

(ol SN ol

O N N

» for string features, we reserve one column for each possible
value: one-hot encoding
» that is, we convert to booleans

X Xe
{ 'f1':'NP', 'f2':'in' }

NP, : 1
{ 'f1Ne, 'f2':'on'j% --!'>» [1
i 0

{ 'fL':'VP', 'f2':'in' }

; ' on
UNVERSITY OF
n GOTHENBURG fl:vP

code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{’£1’:°NP>, ’£27:’in’, ’£3’:False, '£4’:7},
{°£1°:°NP>, °£2°:’0on’, ’£3’:True, ’£4°:2%},
{>f1°:°yP’, °f2’:’in’, ’f3’:False, ’f4’:9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

UNIVERSITY OF
GOTHENBURG

code example (DictVectorizer)

from sklearn.feature_extraction import DictVectorizer

X = [{’£1’:°NP>, ’£27:’in’, ’£3’:False, '£4’:7},
{°£1°:°NP>, °£2°:’0on’, ’£3’:True, ’£4°:2%},
{>f1°:°yP’, °f2’:’in’, ’f3’:False, ’f4’:9}]

vec = DictVectorizer()

Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[1. o0. 1. oO. 7.1
[1. 0. 0. 1. 1. 2.]
[o. 1. 1. oO. 9.1]

{°f4’: 5, ’f2=in’: 2, ’f1=NP’: 0, ’f1=VP’: 1, ’f2=on’: 3, ’£3’:

UNIVERSITY OF
GOTHENBURG

4}

CountVectorizers for document representation

» a CountVectorizer converts from documents
» the document is a string or a list of tokens

> just like string features in a DictVectorizer, we use one-hot
encoding so that each word type will correspond to one column

"example text" ’
"another text" 1 0 1

another text
example

UNIVERSITY OF
GOTHENBURG

code example (CountVectorizer)

X = [’example text’,
’another text?’]

vec = CountVectorizer()
Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

UNIVERSITY OF
GOTHENBURG

code example (CountVectorizer)

X = [’example text’,
’another text?’]

vec = CountVectorizer()
Xe = vec.fit_transform(X)

print(Xe.toarray())

print(vec.vocabulary_)

the result:

[[01 1]
[1 0 111

{’text’: 2, ’example’: 1, ’another’: 0}

UNIVERSITY OF
GOTHENBURG

the vectorizer methods

» fit: look at the data, create the mapping
» transform: convert the data to numbers

» fit_transform = fit + transform

UNIVERSITY OF
GOTHENBURG

overview

linear classifiers

UNIVERSITY OF
GOTHENBURG

linear classifiers

» a linear classifier is a classifier that is defined in terms of a
scoring function like this

sCore = W - X

» explanation of the parts:

> x is a vector with features of what we want to classify (e.g.
made with a DictVectorizer)
» w is a vector representing which features the classifier thinks
are important — this is just like our weight table before
» - is the dot product between the two vectors
» there are two classes: binary classification

» return the first class if the score > 0
» .. .otherwise the second class

> the essential idea: features are scored independently

UNIVERSITY OF
GOTHENBURG

geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

UNIVERSITY OF
GOTHENBURG

training linear classifiers

» the family of learning algorithms that create linear classifiers is
quite large
» perceptron, Naive Bayes, support vector machine, logistic
regression/MaxEnt, . ..
» their underlying theoretical motivations can differ a lot but in
the end they all return a weight vector w

UNIVERSITY OF
GOTHENBURG

linear separability

> a dataset is linearly separable if there exists a w that gives
us perfect classification

» theorem: if the dataset is linearly separable, then the
perceptron learning algorithm will find a separating w in a
finite number of steps

UNIVERSITY OF
GOTHENBURG

a simple example of linear inseparability

very good Positive
very bad Negative
not good Negative

not bad Positive

E unwersiTy oF
S8 GOTHENBURG

mapping into a larger vector space

» we may add combinations of features to make the dataset

separable:

very good very-good Positive
very bad very-bad Negative
not good not-good Negative
Positive

not bad not-bad
» from a geometrical viewpoint: we are creating a feature space

with a higher dimensionality:

> lots of features — LOTS of combinations

UNIVERSITY OF
GOTHENBURG

coding a linear classifier using NumPy

class LinearClassifier(object):
def predict(self, x):
score = x.dot(self.w)
if score >= 0.0:
return self.positive_class
else:
return self.negative_class

E unwersiTy oF
S8 GOTHENBURG

better: handle all instances at the same time

class LinearClassifier(object):
def predict(self, X):
scores = X.dot(self.w)
out = numpy.select([scores>=0.0, scores<0.0],
[self.positive_class,
self.negative_class])
return out

CQ unversiTY oF
S GOTHENBURG

an illustration of the steps

>>> import numpy
>>> scores = numpy.array([-1, 2, 3, -4, 5])

>>> scores >= 0
array([False, True, True, False, True], dtype=bool)

>>> scores < 0
array([True, False, False, True, False], dtype=bool)

>>> numpy.select{([scores >= 0, scores < 0], ["positive", "negative"])

array([’negative’, ’positive’, ’positive’, ’negative’, ’positive’],
dtype=’[88?)

UNIVERSITY OF
GOTHENBURG

perceptron reimplementation in NumPy

class NewPerceptron(LinearClassifier):

def __init__(self, n_iter=10):
self.n_iter = n_iter

def fit(self, X, Y):
... some initialization

X = X.toarray() # convert sparse to dense
n_features = X.shape[1]

self.w = numpy.zeros(n_features)

for i in range(self.n_iter):
for x, y in zip(X, Y):

score = self.w.dot(x)

if score <= 0 and y == self.positive_class:
self.w += x

elif score >= 0 and y == self.negative_class:
self.w -= x

UNIVERSITY OF
GOTHENBURG

a reformulation of the perceptron algorithm

» in many machine learning papers, the positive and negative
class are implicitly represented as +1 and -1, respectively

» then the perceptron algorithm can be written a bit more
compactly

class NewPerceptron2(LinearClassifier):
...
def fit(self, X, Y):
... some initialization
for i in range(self.n_iter):
for x, y in zip(X, Y):
score = self.w.dot(x)
if y*score <= 0:
self.w += y*x

UNIVERSITY OF
GOTHENBURG

still too slow. . .

UNIVERSITY OF
GOTHENBURG

this implementation uses NumPy’s dense vectors

with a large training set with lots of features, it may be better
to use SciPy’s sparse vectors

however, w is a dense vector and | found it a bit tricky to mix
sparse and dense vectors

this is the best solution I've been able to come up with for the
two operations w - x and w+=x

def sparse_dense_dot(x, w):
return numpy.dot(w[x.indices], x.data)

def add_sparse_to_dense(x, w, xw):
w[x.indices] += xw*x.data

reimplementation with sparse vectors

class SparsePerceptron(LinearClassifier):
...

def fit(self, X, Y):
... some initialization

for i in range(self.n_iter):
for x, y in zip(X, Y):

score = sparse_dense_dot(x, self.w)

if y*score <= 0:
add_sparse_to_dense(x, self.w, y)

E unwersiTy oF
S8 GOTHENBURG

comparison

» on my computer, with the data set we'll use in assignment 2:

» dense vectors: 17 seconds
» sparse vectors: 3 seconds

UNIVERSITY OF
GOTHENBURG

next lecture

» optimization: how to find the maximum or minimum of a
mathematical function

» we will use this to introduce two other algorithms for training
linear classifiers:

» support vector classifier (LinearSVC)
» logistic regression (LogisticRegression)

» overview of the second assignment

UNIVERSITY OF
GOTHENBURG

	the perceptron revisited
	basic linear algebra and its implementation in Python
	converting features to numerical vectors
	linear classifiers

