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linear classifiers

» a linear classifier is a classifier that is defined in terms of a
scoring function like this

score = W - X

» explanation of the parts:
» x is a vector with features of what we want to classify (e.g.
made with a DictVectorizer)
» w is a vector representing which features the classifier thinks
are important
» . is the dot product between the two vectors

» for now, we'll assume that there are two classes: binary
classification
» return the first class if the score > 0
» .. otherwise the second class

» the essential idea: features are scored independently
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geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)
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optimization and machine learning
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we will now consider models that are less ad-hoc than the
perceptron

idea: define an objective function based on the fundamental
tradeoff in machine learning:

» how well we handle the training set (loss)

» simplicity of the model (regularization)
... and then the training consists of applying optimization
techniques to find the best w
we will consider two models:

» logistic regression, based on probability
» support vector classifier, based on geometry



in scikit-learn

» LR is called sklearn.linear_model.LogisticRegression

» SVM is called sklearn.svm.LinearSVC
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http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

overview

logistic regression

UNIVERSITY OF
GOTHENBURG



linear classifiers with probabilities?

v

linear classifiers select the outputs based on a scoring function:
score = W - X

» how to convert the scores into probabilities?

» idea: use a logistic or sigmoid function:
. 1
P(pOSlthe OUtpUt’X) = W
where e75°"® = math.exp(-score)
» this is formally a probability: always between 0 and 1, sum of

probablities of possible outcomes = 1
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the logistic function
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conversely

1
P(negative output|x) = 11 escore
e
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making it a bit more compact

» if we code the positive class as +1 and the negative class
as -1, then we can write the probability a bit more neatly:

1
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recall: the maximum likelihood principle

> select the model that gives a high probability to the data
> in our case, the “model” is the weight vector w

» adjust w so that each output label gets a high probability
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the likelihood function

» formally, the “probability of the data” is defined by the
likelihood function

» this is the product of the probabilities of all m individual
training instances:

L(w) = P(y1|x1) - ...  P(yT|xm)
> in our case, this means

1 1

L(W) = 1+ e*}/l'(W'Xl) T 1+ e*ym'(W~Xm)
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rewriting a bit. ..

» we rewrite the previous formula

L(w):He_}l/M~...-W
> as
—log L(w) = Loss(w, x1,y1) + ... + Loss(w, Xm, Ym)
where

Loss(w, x,y) = log(1 + exp(—y - (w - x)))

is called the log loss function
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plot of the log loss
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recall: the fundamental tradeoff in machine learning

» goodness of fit: the learned classifier should be able
to correctly classify the examples in the training data

» regularization: the classifier should be simple

» but so far in our LR description, we've just taken care
of the first part!
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what does it mean to “keep the classifier simple”?

» concretely, how can we add regularization to the LR model?

» the most common approach is to add a term that keeps the
weights small

» formally, we say that the the squared length (norm) of the
weight vector should be small:

\w\2:W1-W1+...+W,,-W,,:W-W
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combining the pieces
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we combine the loss and the regularizer:

Z Loss(w, x;,yi) + \ - |w|?

in this formula, A is a “tweaking” parameter that controls the
tradeoff between loss and regularization

note: in some formulations (including scikit-learn), there is a
parameter C instead of the \ that is put before the loss



this still doesn’t look implementable. . .

» we have an objective function that we want to minimize:

ZLOSS(vaia)/i) +A- |W‘2

» but we still don’t know how to convert this into code!
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overview

support vector machines
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geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)
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margin of separation

» the margin 7 denotes how well w separates the classes:

Margin 1

Margin 2
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large margins are good

» a result from statistical learning theory:

L

expected test error = training error + BigUglyFormula(—)
Y

> larger margin — better generalization
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support vector machines

» support vector machines (SVMs) or support vector
classifiers (SVC) are linear classifiers constructed by selecting
the w that maximizes the margin

» note: the solution depends only on the borderline examples:
the support vectors
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soft-margin SVMs

> in some cases the dataset is inseparable, or nearly inseparable

» soft-margin SVM: allow some examples to be disregarded
when maximizing the margin

A) Hard Margin SVM

B) Soft Margin SVM
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stating the SVM as using an objective function

» the hard-margin and soft-margin SVM can be stated
mathematically in a number of ways

» we'll skip the details, but with a bit of work we can show that
the soft-margin SVM can be stated as minimizing

Z Loss(w, x;,y;) + A - |w|?

where

Loss(w, x,y) = max(0,1 —y - (w - x))

is called the hinge loss
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plot of the hinge loss
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overview

basic optimization
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optimization

» what is optimization?

» unconstrained optimization: find the x that gives us the
minimal (or maximal) value of some function f:

min f(x)

X

» constrained optimization: find the x that gives us the
minimal (or maximal) value of f, where x satisfies some extra

conditions:
min f(x)

such that x >0

» today unconstrained optimization only
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one-variable example

1.5
1.0r
0.5F
0.0r
minimum
05 .
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two-variable example




remember your highschool calculus. ..

> in your early school days, you might have seen the derivative
of a function

> intuition: the derivative measures the slope

minimum

w3 -2 -1 0 1 2 3

> if a “nice” function has a maximum or minimum, then the
derivative will be zero there
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the gradient

» the multidimensional equivalent of the derivative is called the
gradient

» if f is a function of n variables, then the gradient is an
n-dimensional vector, often written Vf(x)

> intuition: the gradient points in the uphill direction

» again: the gradient is zero if we have an optimum
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computing the gradient
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gradient descent

> as we saw, the gradient points in the uphill direction:

» this intuition leads to a simple idea for finding the minimum:

» take a small step in the direction opposite to the gradient
» repeat until the gradient is close enough to zero

» this is called gradient descent
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gradient descent, pseudocode

» the same thing again, in pseudocode:
1. set x to some initial value, and select a suitable step size ¢
2. compute the gradient V£ (x)
3. if Vf(x) is small enough, we are done
4. otherwise, subtract ¢ - Vf(x) from x and go back to step 2
» conversely, to find the maximum we can do gradient ascent:
then we instead add ¢ - Vf(x) to x
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in Python

def gradient_ascent(x_init, y_init,
threshold = 0.001,
steplength = 0.01):
x = x_init
y = y_init
done = False
while not done:
gxy = gradient_of_my_function(x, y)
x += steplength * gxyl[0]
y += steplength * gxy[1]
if numpy.linalg.norm(gxy) < threshold:
done = True
return (x, y)
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gradient ascent example

> let’s optimize this function:

def f(x, y):
return math.exp(-(x-2)**2 - (y+1)*x2)

> its gradient is

def gradient_of_f(x, y):
return (-2*(x-2)*f(x, y), -2*(y+1)*f(x, y))
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gradient ascent example
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gradient ascent example
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will we always reach the top?

> ves, if
» there is actually a top
> the step is short enough
» the surface isn't too jumpy
> smarter versions of gradient ascent/descent try to adapt the
step length so that we don’t go too slow in the beginning, or
bounce around the top at the end
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gradient ascent example (2)

> let’s optimize another function:

def f(x, y):
return math.exp( -(x-2)*x2 - 0.5*%(y+1)**2) \
+ 0.7 * math.exp( -0.7*(x+1)**2 - 0.8%(y-1)*x2)
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gradient ascent example (2)
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gradient ascent example (2)
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gradient ascent example (2)
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gradient ascent example (2)
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gradient ascent example (2)
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gradient ascent

example (2)
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gradient ascent example (2)
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gradient ascent example (2)
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local and global maxima/minima

» some functions have local maxima or minima

» these functions are harder to optimize because the local (but
not global) optima also have a gradient of 0



convex and concave functions

» a function is convex if it always curves downwards

» equivalently, if we draw a line between two points of the
surface, the surface is always below the line

= B 1 g T 3 3 = =3 = g B B 5

» the point of this: if we find a local optimum (gradient is 0) of
a convex function, this is guaranteed to be the minimum

» conversely, a function is concave if it always curves upwards
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stochastic gradient descent

> in some cases it is cumbersome to compute the gradient
» because it depends on all the data in the training set

stochastic gradient descent: simplify the computation by
computing the gradient using just a small part

v

» typically, a single training example

v

pseudocode:
1. set w to some initial value, and select a suitable step size ¢
2. select a single training instance x
3. compute the gradient Vf(w) using x only
4. if we are “done”, stop
5. otherwise, subtract ¢ - Vf(w) from w and go back to step 2

» (stopping criterion shouldn’t be based on just a single instance)
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SVM and LR have convex objective functions
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optimizing SVM and LR

» since the objective functions of SVM and LR are convex, we
can find w by stochastic gradient descent
» pseudocode:

» set w to some initial value, e.g. all zero
> iterate a fixed number of times:
> select a single training instance x
> select a “suitable” step length 7
» compute the gradient of the hinge loss or log loss
> subtract step length - gradient from w

» note the similarity to the perceptron!
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overview

practical information
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some comments about assignment 2

» implement SVM and LR and test them in a document classifier

> we'll use the Pegasos algorithm — see assignment page
» Pegasos works in an iterative fashion similar to the perceptron
» ...so if you start from my perceptron code this will be a breeze

» optional tasks to speed up the implementation using sparse
vectors

UNIVERSITY OF
GOTHENBURG



some clarifications about the paper

» the important part of the paper is the pseudocode in Figure 1

» Pegasos adapts the step length 1 over time: long steps in the
beginning, smaller in the end

» (w,x) is the dot product w - x
» S is the training set, |S| is the size of S

» T is the number of steps in the algorithm.

» this is a bit different from our perceptron, where we specified
the number of times to process the whole training set.

» the optional line is there for theoretical reasons and can be
ignored

» a subgradient is a gradient for “abrupt” functions such as the
hinge loss
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practical information

> solve the assignment individually
> two lab sessions next week

» deadline one week later: September 24
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seminar tomorrow

» Peter will present a classical paper about document polarity
classification

» I'll present some additional material
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lecture next week

» on Friday — so no seminar next week
» neural networks:

» non-linear classifiers
» they are also implemented using objective functions and
optimization
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