Machine Learning for NLP
 Lecture 3: Optimization and machine learning

Richard Johansson

September 8, 2016

linear classifiers

- a linear classifier is a classifier that is defined in terms of a scoring function like this

$$
\text { score }=\boldsymbol{w} \cdot \boldsymbol{x}
$$

- explanation of the parts:
- x is a vector with features of what we want to classify (e.g. made with a DictVectorizer)
- \boldsymbol{w} is a vector representing which features the classifier thinks are important
- . is the dot product between the two vectors
- for now, we'll assume that there are two classes: binary classification
- return the first class if the score >0
- ... otherwise the second class
- the essential idea: features are scored independently

geometric view

- geometrically, a linear classifier can be interpreted as separating the vector space into two regions with a line (plane, hyperplane)

optimization and machine learning

- we will now consider models that are less ad-hoc than the perceptron
- idea: define an objective function based on the fundamental tradeoff in machine learning:
- how well we handle the training set (loss)
- simplicity of the model (regularization)
- ... and then the training consists of applying optimization techniques to find the best \boldsymbol{w}
- we will consider two models:
- logistic regression, based on probability
- support vector classifier, based on geometry

in scikit-learn

- LR is called sklearn.linear_model.LogisticRegression
- SVM is called sklearn.svm.LinearSVC

overview

logistic regression

support vector machines

basic optimization

practical information

linear classifiers with probabilities?

- linear classifiers select the outputs based on a scoring function:

$$
\text { score }=\boldsymbol{w} \cdot \boldsymbol{x}
$$

- how to convert the scores into probabilities?
- idea: use a logistic or sigmoid function:

$$
P(\text { positive output } \mid x)=\frac{1}{1+e^{- \text {score }}}
$$

where $e^{- \text {score }}=$ math. $\cdot \exp (-$ score $)$

- this is formally a probability: always between 0 and 1 , sum of probablities of possible outcomes $=1$
the logistic function

conversely

$$
P(\text { negative output } \mid \boldsymbol{x})=\frac{1}{1+e^{\mathrm{score}}}
$$

making it a bit more compact

- if we code the positive class as +1 and the negative class as -1 , then we can write the probability a bit more neatly:

$$
P(y \mid x)=\frac{1}{1+e^{-y \cdot s c o r e}}
$$

recall: the maximum likelihood principle

- select the model that gives a high probability to the data
- in our case, the "model" is the weight vector w
- adjust \boldsymbol{w} so that each output label gets a high probability

the likelihood function

- formally, the "probability of the data" is defined by the likelihood function
- this is the product of the probabilities of all m individual training instances:

$$
L(\boldsymbol{w})=P\left(y_{1} \mid \boldsymbol{x}_{1}\right) \cdot \ldots \cdot P\left(y_{T} \mid \boldsymbol{x}_{m}\right)
$$

- in our case, this means

$$
L(\boldsymbol{w})=\frac{1}{1+e^{-y_{1} \cdot\left(\boldsymbol{w} \cdot \boldsymbol{x}_{1}\right)}} \cdot \cdots \cdot \frac{1}{1+e^{-y_{m} \cdot\left(\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{m}}\right)}}
$$

rewriting a bit. . .

- we rewrite the previous formula

$$
L(\boldsymbol{w})=\frac{1}{1+e^{-y_{1} \cdot\left(\boldsymbol{w} \cdot x_{1}\right)}} \cdot \cdots \cdot \frac{1}{1+e^{-y_{m} \cdot\left(\boldsymbol{w} \cdot x_{m}\right)}}
$$

- as

$$
-\log L(\boldsymbol{w})=\operatorname{Loss}\left(\boldsymbol{w}, \boldsymbol{x}_{1}, y_{1}\right)+\ldots+\operatorname{Loss}\left(\boldsymbol{w}, \boldsymbol{x}_{m}, y_{m}\right)
$$

where

$$
\operatorname{Loss}(\boldsymbol{w}, \boldsymbol{x}, y)=\log (1+\exp (-y \cdot(\boldsymbol{w} \cdot \boldsymbol{x})))
$$

is called the log loss function

plot of the log loss

- goodness of fit: the learned classifier should be able to correctly classify the examples in the training data
- regularization: the classifier should be simple
- but so far in our LR description, we've just taken care of the first part!

what does it mean to "keep the classifier simple"?

- concretely, how can we add regularization to the LR model?
- the most common approach is to add a term that keeps the weights small
- formally, we say that the the squared length (norm) of the weight vector should be small:

$$
|\boldsymbol{w}|^{2}=w_{1} \cdot w_{1}+\ldots+w_{n} \cdot w_{n}=\boldsymbol{w} \cdot \boldsymbol{w}
$$

combining the pieces

- we combine the loss and the regularizer:

$$
\sum \operatorname{Loss}\left(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}\right)+\lambda \cdot|\boldsymbol{w}|^{2}
$$

- in this formula, λ is a "tweaking" parameter that controls the tradeoff between loss and regularization
- note: in some formulations (including scikit-learn), there is a parameter C instead of the λ that is put before the loss

this still doesn't look implementable. .

- we have an objective function that we want to minimize:

$$
\sum \operatorname{Loss}\left(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}\right)+\lambda \cdot|\boldsymbol{w}|^{2}
$$

- but we still don't know how to convert this into code!

overview

logistic regression

support vector machines

basic optimization

practical information

geometric view

- geometrically, a linear classifier can be interpreted as separating the vector space into two regions with a line (plane, hyperplane)

margin of separation

- the margin γ denotes how well \boldsymbol{w} separates the classes:

large margins are good

- a result from statistical learning theory:

$$
\text { expected test error }=\text { training error }+\operatorname{BigUglyFormula}\left(\frac{1}{\gamma^{2}}\right)
$$

- larger margin \rightarrow better generalization

support vector machines

- support vector machines (SVMs) or support vector classifiers (SVC) are linear classifiers constructed by selecting the \boldsymbol{w} that maximizes the margin

- note: the solution depends only on the borderline examples: the support vectors

soft-margin SVMs

- in some cases the dataset is inseparable, or nearly inseparable
- soft-margin SVM: allow some examples to be disregarded when maximizing the margin

A) Hard Margin SVM

B) Soft Margin SVM

stating the SVM as using an objective function

- the hard-margin and soft-margin SVM can be stated mathematically in a number of ways
- we'll skip the details, but with a bit of work we can show that the soft-margin SVM can be stated as minimizing

$$
\sum \operatorname{Loss}\left(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}\right)+\lambda \cdot|\boldsymbol{w}|^{2}
$$

where

$$
\operatorname{Loss}(\boldsymbol{w}, \boldsymbol{x}, y)=\max (0,1-y \cdot(\boldsymbol{w} \cdot \boldsymbol{x}))
$$

is called the hinge loss

plot of the hinge loss

overview

logistic regression

 support vector machines

 support vector machines}
basic optimization

practical information

optimization

- what is optimization?
- unconstrained optimization: find the x that gives us the minimal (or maximal) value of some function f :

$$
\min _{x} f(x)
$$

- constrained optimization: find the x that gives us the minimal (or maximal) value of f, where x satisfies some extra conditions:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { such that } x>0
\end{aligned}
$$

- today unconstrained optimization only

one-variable example

two-variable example

remember your highschool calculus...

- in your early school days, you might have seen the derivative of a function
- intuition: the derivative measures the slope

- if a "nice" function has a maximum or minimum, then the derivative will be zero there

the gradient

- the multidimensional equivalent of the derivative is called the gradient
- if f is a function of n variables, then the gradient is an n-dimensional vector, often written $\nabla f(x)$
- intuition: the gradient points in the uphill direction

- again: the gradient is zero if we have an optimum

computing the gradient

WolframAlpha
 computational．
 knowledge engine

gradient of $0.7^{*} \exp \left(-0.7 *(x+1)^{* * 2}-0.8^{*}(y-1)^{* *} 2\right.$

```
囤 回 田 度
\equiv Examples 准Random
```

Assuming＂gradient＂is a function｜Use as a unit instead

$$
\begin{aligned}
& \text { Input interpretation: } \\
& \qquad \operatorname{grad}\left(0.7 e^{-0.7(1+x)^{2}-0.8(-1+y)^{2}}\right) \\
& \text { Result: } \\
& \operatorname{grad}\left(0.7 e^{-0.7(x+1)^{2}-0.8(y-1)^{2}}\right)
\end{aligned}
$$

Del operator form：

$$
\nabla\left(0.7 e^{-0.7(1+x)^{2}-0.8(-1+y)^{2}}\right)
$$

Result in 2D Cartesian coordinates：

$$
\begin{aligned}
& \operatorname{grad}\left(0.7 e^{-0.7(x+1)^{2}-0.8(y-1)^{2}}\right)= \\
& \qquad\left\{-0.98(x+1) e^{-0.7(x+1)^{2}-0.8(y-1 .)^{2}},-1.12(y-1) e^{-0.7(x+1)^{2}-0.8(y-1 .)^{2}}\right\}
\end{aligned}
$$

（ x ：first Cartesian coordinate $\mid y$ ：second Cartesian coordinate）

gradient descent

- as we saw, the gradient points in the uphill direction:

- this intuition leads to a simple idea for finding the minimum:
- take a small step in the direction opposite to the gradient
- repeat until the gradient is close enough to zero
- this is called gradient descent

gradient descent, pseudocode

- the same thing again, in pseudocode:

1. set x to some initial value, and select a suitable step size c
2. compute the gradient $\nabla f(x)$
3. if $\nabla f(x)$ is small enough, we are done
4. otherwise, subtract $c \cdot \nabla f(x)$ from x and go back to step 2

- conversely, to find the maximum we can do gradient ascent: then we instead add $c \cdot \nabla f(x)$ to x

in Python

```
def gradient_ascent(x_init, y_init,
    threshold = 0.001,
    steplength = 0.01):
    x = x_init
    y = y_init
    done = False
    while not done:
        gxy = gradient_of_my_function(x, y)
        x += steplength * gxy[0]
        y += steplength * gxy[1]
        if numpy.linalg.norm(gxy) < threshold:
        done = True
return (x, y)
```


gradient ascent example

- let's optimize this function:

```
def f(x, y):
        return math.exp(-(x-2)**2 - (y+1)**2)
```

- its gradient is

```
def gradient_of_f(x, y):
    return (-2*(x-2)*f(x, y), -2*(y+1)*f(x, y))
```


gradient ascent example

will we always reach the top?

- yes, if
- there is actually a top
- the step is short enough
- the surface isn't too jumpy
- smarter versions of gradient ascent/descent try to adapt the step length so that we don't go too slow in the beginning, or bounce around the top at the end

gradient ascent example (2)

- let's optimize another function:

```
def f(x, y):
    return math.exp( - (x-2)**2 - 0.5*(y+1)**2) \
    + 0.7 * math. exp( -0.7*(x+1)**2 - 0.8*(y-1)**2)
```


gradient ascent example (2)

local and global maxima/minima

- some functions have local maxima or minima

- these functions are harder to optimize because the local (but not global) optima also have a gradient of 0

convex and concave functions

- a function is convex if it always curves downwards
- equivalently, if we draw a line between two points of the surface, the surface is always below the line

- the point of this: if we find a local optimum (gradient is 0) of a convex function, this is guaranteed to be the minimum
- conversely, a function is concave if it always curves upwards

stochastic gradient descent

- in some cases it is cumbersome to compute the gradient
- because it depends on all the data in the training set
- stochastic gradient descent: simplify the computation by computing the gradient using just a small part
- typically, a single training example
- pseudocode:

1. set w to some initial value, and select a suitable step size c
2. select a single training instance x
3. compute the gradient $\nabla f(w)$ using x only
4. if we are "done", stop
5. otherwise, subtract $c \cdot \nabla f(w)$ from w and go back to step 2

- (stopping criterion shouldn't be based on just a single instance)

SVM and LR have convex objective functions

optimizing SVM and LR

- since the objective functions of SVM and LR are convex, we can find \boldsymbol{w} by stochastic gradient descent
- pseudocode:
- set \boldsymbol{w} to some initial value, e.g. all zero
- iterate a fixed number of times:
- select a single training instance x
- select a "suitable" step length η
- compute the gradient of the hinge loss or log loss
- subtract step length • gradient from w
- note the similarity to the perceptron!

overview

logistic regression

support vector machines

basic optimization
practical information

some comments about assignment 2

- implement SVM and LR and test them in a document classifier
- we'll use the Pegasos algorithm - see assignment page
- Pegasos works in an iterative fashion similar to the perceptron
- ... so if you start from my perceptron code this will be a breeze
- optional tasks to speed up the implementation using sparse vectors

some clarifications about the paper

- the important part of the paper is the pseudocode in Figure 1
- Pegasos adapts the step length η over time: long steps in the beginning, smaller in the end
- $\langle\boldsymbol{w}, \boldsymbol{x}\rangle$ is the dot product $\boldsymbol{w} \cdot \boldsymbol{x}$
- S is the training set, $|S|$ is the size of S
- T is the number of steps in the algorithm.
- this is a bit different from our perceptron, where we specified the number of times to process the whole training set.
- the optional line is there for theoretical reasons and can be ignored
- a subgradient is a gradient for "abrupt" functions such as the hinge loss

practical information

- solve the assignment individually
- two lab sessions next week
- deadline one week later: September 24

seminar tomorrow

- Peter will present a classical paper about document polarity classification
- I'll present some additional material

lecture next week

- on Friday - so no seminar next week
- neural networks:
- non-linear classifiers
- they are also implemented using objective functions and optimization

