Machine Learning for NLP
Lecture 3: Optimization and machine learning

UNIVERSITY OF
GOTHENBURG

UNIVERSITY OF
GOTHENBURG

Richard Johansson

September 8, 2016

linear classifiers

» a linear classifier is a classifier that is defined in terms of a
scoring function like this

score = W - X

» explanation of the parts:
» x is a vector with features of what we want to classify (e.g.
made with a DictVectorizer)
» w is a vector representing which features the classifier thinks
are important
» . is the dot product between the two vectors

» for now, we'll assume that there are two classes: binary
classification
» return the first class if the score > 0
» .. otherwise the second class

» the essential idea: features are scored independently

UNIVERSITY OF
GOTHENBURG

geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

UNIVERSITY OF
GOTHENBURG

optimization and machine learning

UNIVERSITY OF
GOTHENBURG

we will now consider models that are less ad-hoc than the
perceptron

idea: define an objective function based on the fundamental
tradeoff in machine learning:

» how well we handle the training set (loss)

» simplicity of the model (regularization)
... and then the training consists of applying optimization
techniques to find the best w
we will consider two models:

» logistic regression, based on probability
» support vector classifier, based on geometry

in scikit-learn

» LR is called sklearn.linear_model.LogisticRegression

» SVM is called sklearn.svm.LinearSVC

UNIVERSITY OF
GOTHENBURG

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

overview

logistic regression

UNIVERSITY OF
GOTHENBURG

linear classifiers with probabilities?

v

linear classifiers select the outputs based on a scoring function:
score = W - X

» how to convert the scores into probabilities?

» idea: use a logistic or sigmoid function:
. 1
P(pOSlthe OUtpUt’X) = W
where e75°"® = math.exp(-score)
» this is formally a probability: always between 0 and 1, sum of

probablities of possible outcomes = 1

UNIVERSITY OF
GOTHENBURG

the logistic function

i

i H]

UNIVERSITY OF
GOTHENBURG

conversely

1
P(negative output|x) = 11 escore
e

C unversiTy oF
B GOTHENBURG

making it a bit more compact

» if we code the positive class as +1 and the negative class
as -1, then we can write the probability a bit more neatly:

1

UNIVERSITY OF
GOTHENBURG

recall: the maximum likelihood principle

> select the model that gives a high probability to the data
> in our case, the “model” is the weight vector w

» adjust w so that each output label gets a high probability

UNIVERSITY OF
GOTHENBURG

the likelihood function

» formally, the “probability of the data” is defined by the
likelihood function

» this is the product of the probabilities of all m individual
training instances:

L(w) = P(y1|x1) - ... P(yT|xm)
> in our case, this means

1 1

L(W) = 1+ e*}/l'(W'Xl) T 1+ e*ym'(W~Xm)

UNIVERSITY OF
GOTHENBURG

rewriting a bit. ..

» we rewrite the previous formula

L(w):He_}l/M~...-W
> as
—log L(w) = Loss(w, x1,y1) + ... + Loss(w, Xm, Ym)
where

Loss(w, x,y) = log(1 + exp(—y - (w - x)))

is called the log loss function

UNIVERSITY OF
GOTHENBURG

plot of the log loss

04

C unveRsITY OF
S8 GOTHENBURG

recall: the fundamental tradeoff in machine learning

» goodness of fit: the learned classifier should be able
to correctly classify the examples in the training data

» regularization: the classifier should be simple

» but so far in our LR description, we've just taken care
of the first part!

E unwersiTy oF
S8 GOTHENBURG

what does it mean to “keep the classifier simple”?

» concretely, how can we add regularization to the LR model?

» the most common approach is to add a term that keeps the
weights small

» formally, we say that the the squared length (norm) of the
weight vector should be small:

\w\2:W1-W1+...+W,,-W,,:W-W

UNIVERSITY OF
GOTHENBURG

combining the pieces

UNIVERSITY OF
GOTHENBURG

we combine the loss and the regularizer:

Z Loss(w, x;,yi) + \ - |w|?

in this formula, A is a “tweaking” parameter that controls the
tradeoff between loss and regularization

note: in some formulations (including scikit-learn), there is a
parameter C instead of the \ that is put before the loss

this still doesn’t look implementable. . .

» we have an objective function that we want to minimize:

ZLOSS(vaia)/i) +A- |W‘2

» but we still don’t know how to convert this into code!

UNIVERSITY OF
GOTHENBURG

overview

support vector machines

UNIVERSITY OF
GOTHENBURG

geometric view

» geometrically, a linear classifier can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

UNIVERSITY OF
GOTHENBURG

margin of separation

» the margin 7 denotes how well w separates the classes:

Margin 1

Margin 2

UNIVERSITY OF
GOTHENBURG

large margins are good

» a result from statistical learning theory:

L

expected test error = training error + BigUglyFormula(—)
Y

> larger margin — better generalization

C unveRsITY OF
S8 GOTHENBURG

support vector machines

» support vector machines (SVMs) or support vector
classifiers (SVC) are linear classifiers constructed by selecting
the w that maximizes the margin

» note: the solution depends only on the borderline examples:
the support vectors

UNIVERSITY OF
GOTHENBURG

soft-margin SVMs

> in some cases the dataset is inseparable, or nearly inseparable

» soft-margin SVM: allow some examples to be disregarded
when maximizing the margin

A) Hard Margin SVM

B) Soft Margin SVM

UNIVERSITY OF
GOTHENBURG

stating the SVM as using an objective function

» the hard-margin and soft-margin SVM can be stated
mathematically in a number of ways

» we'll skip the details, but with a bit of work we can show that
the soft-margin SVM can be stated as minimizing

Z Loss(w, x;,y;) + A - |w|?

where

Loss(w, x,y) = max(0,1 —y - (w - x))

is called the hinge loss

UNIVERSITY OF
GOTHENBURG

plot of the hinge loss

04

C unveRsITY OF
S8 GOTHENBURG

overview

basic optimization

UNIVERSITY OF
GOTHENBURG

optimization

» what is optimization?

» unconstrained optimization: find the x that gives us the
minimal (or maximal) value of some function f:

min f(x)

X

» constrained optimization: find the x that gives us the
minimal (or maximal) value of f, where x satisfies some extra

conditions:
min f(x)

such that x >0

» today unconstrained optimization only

UNIVERSITY OF
GOTHENBURG

one-variable example

1.5
1.0r
0.5F
0.0r
minimum
05 .
0573 -2 -1 0 1

E unwersiTy oF
S8 GOTHENBURG

two-variable example

remember your highschool calculus. ..

> in your early school days, you might have seen the derivative
of a function

> intuition: the derivative measures the slope

minimum

w3 -2 -1 0 1 2 3

> if a “nice” function has a maximum or minimum, then the
derivative will be zero there

UNIVERSITY OF
GOTHENBURG

the gradient

» the multidimensional equivalent of the derivative is called the
gradient

» if f is a function of n variables, then the gradient is an
n-dimensional vector, often written Vf(x)

> intuition: the gradient points in the uphill direction

» again: the gradient is zero if we have an optimum

UNIVERSITY OF
GOTHENBURG

computing the gradient

& WolframAlpha

{ gradient of 0.7 * expl -0 [7Hx+ 112 - 0. 8¥y-1)+*

>mputational

novladge engina

[ol=-I+]

Assuming "gradient' is function | Use as a unit instead

= Examples

=2 Random
Inputinterpretation

grad(ﬂ.? 0701422 -0.8 (—1+y)1]

Result

grad(O.? 07 (+1%-08 (y—uz'

erator form:

(U 7e-0 7:1+x|2—u.sl—1+y|2'

Resultin 2D Cartesian

dinates:
grad(O.? =07 (x+1)2-08 (y-u?l _

- unversI oF

GOTHENBURG

{,g_gg (x4 1) e 0T -080-107 119y 1) g0 7:x+1|2-o.s(y—1.|2}
(x: first Cartesian coordinate | y- second Cartesian coordinate)
@ Dowrload page

OWERED BY THE WOLFRAM LANGUAGE

=

it
kN
N)

gradient descent

> as we saw, the gradient points in the uphill direction:

» this intuition leads to a simple idea for finding the minimum:

» take a small step in the direction opposite to the gradient
» repeat until the gradient is close enough to zero

» this is called gradient descent

UNIVERSITY OF
GOTHENBURG

gradient descent, pseudocode

» the same thing again, in pseudocode:
1. set x to some initial value, and select a suitable step size ¢
2. compute the gradient V£ (x)
3. if Vf(x) is small enough, we are done
4. otherwise, subtract ¢ - Vf(x) from x and go back to step 2
» conversely, to find the maximum we can do gradient ascent:
then we instead add ¢ - Vf(x) to x

UNIVERSITY OF
GOTHENBURG

in Python

def gradient_ascent(x_init, y_init,
threshold = 0.001,
steplength = 0.01):
x = x_init
y = y_init
done = False
while not done:
gxy = gradient_of_my_function(x, y)
x += steplength * gxyl[0]
y += steplength * gxy[1]
if numpy.linalg.norm(gxy) < threshold:
done = True
return (x, y)

UNIVERSITY OF
GOTHENBURG

gradient ascent example

> let’s optimize this function:

def f(x, y):
return math.exp(-(x-2)**2 - (y+1)*x2)

> its gradient is

def gradient_of_f(x, y):
return (-2*(x-2)*f(x, y), -2*(y+1)*f(x, y))

UNIVERSITY OF
GOTHENBURG

gradient ascent example

0.5-

0.0 -

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0 -

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0 -

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

gradient ascent example

0.5-

0.0

—0.51

—1.0}

—1.5¢

—-2.0}

—2.51

-3.0

-1 0

UNIVERST
GOTHENBURG

will we always reach the top?

> ves, if
» there is actually a top
> the step is short enough
» the surface isn't too jumpy
> smarter versions of gradient ascent/descent try to adapt the
step length so that we don’t go too slow in the beginning, or
bounce around the top at the end

UNIVERSITY OF
GOTHENBURG

gradient ascent example (2)

> let’s optimize another function:

def f(x, y):
return math.exp(-(x-2)*x2 - 0.5*%(y+1)**2) \
+ 0.7 * math.exp(-0.7*(x+1)**2 - 0.8%(y-1)*x2)

CQ unversiTY oF
S GOTHENBURG

gradient ascent example (2)

2 0.300
1+ d
o]
’ o 0.900
n
- o
-1} o § U A
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

gradient ascent example (2)

2 0.300
1+ d
o]
’ o 0.900
n
- o
-1} o § U A
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

gradient ascent example (2)

UNIVERST
GOTHENBURG

gradient ascent example (2)

UNIVERST
GOTHENBURG

gradient ascent example (2)

2 0.300
1+ ~ d
o]
’ o 0.900
n
- o
-1} o § U A
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

gradient ascent

example (2)

2 0.300
1+ - d
o]
’ o 0.900
n
- o
N | § U |
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

gradient ascent example (2)

2 0.300
b < i
o]
’ o 0.900
n
- o
-1} o § U A
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

gradient ascent example (2)

2 0.300
b - i
o]
’ o 0.900
n
- o
-1} o § U A
2L J
-3 L Il
-3 -2 -1 2

UNIVERST
GOTHENBURG

local and global maxima/minima

» some functions have local maxima or minima

» these functions are harder to optimize because the local (but
not global) optima also have a gradient of 0

convex and concave functions

» a function is convex if it always curves downwards

» equivalently, if we draw a line between two points of the
surface, the surface is always below the line

= B 1 g T 3 3 = =3 = g B B 5

» the point of this: if we find a local optimum (gradient is 0) of
a convex function, this is guaranteed to be the minimum

» conversely, a function is concave if it always curves upwards

UNIVERSITY OF
GOTHENBURG

stochastic gradient descent

> in some cases it is cumbersome to compute the gradient
» because it depends on all the data in the training set

stochastic gradient descent: simplify the computation by
computing the gradient using just a small part

v

» typically, a single training example

v

pseudocode:
1. set w to some initial value, and select a suitable step size ¢
2. select a single training instance x
3. compute the gradient Vf(w) using x only
4. if we are “done”, stop
5. otherwise, subtract ¢ - Vf(w) from w and go back to step 2

» (stopping criterion shouldn’t be based on just a single instance)

UNIVERSITY OF
GOTHENBURG

SVM and LR have convex objective functions

UNIVERSITY OF
GOTHENBURG

optimizing SVM and LR

» since the objective functions of SVM and LR are convex, we
can find w by stochastic gradient descent
» pseudocode:

» set w to some initial value, e.g. all zero
> iterate a fixed number of times:
> select a single training instance x
> select a “suitable” step length 7
» compute the gradient of the hinge loss or log loss
> subtract step length - gradient from w

» note the similarity to the perceptron!

UNIVERSITY OF
GOTHENBURG

overview

practical information

UNIVERSITY OF
GOTHENBURG

some comments about assignment 2

» implement SVM and LR and test them in a document classifier

> we'll use the Pegasos algorithm — see assignment page
» Pegasos works in an iterative fashion similar to the perceptron
» ...so if you start from my perceptron code this will be a breeze

» optional tasks to speed up the implementation using sparse
vectors

UNIVERSITY OF
GOTHENBURG

some clarifications about the paper

» the important part of the paper is the pseudocode in Figure 1

» Pegasos adapts the step length 1 over time: long steps in the
beginning, smaller in the end

» (w,x) is the dot product w - x
» S is the training set, |S| is the size of S

» T is the number of steps in the algorithm.

» this is a bit different from our perceptron, where we specified
the number of times to process the whole training set.

» the optional line is there for theoretical reasons and can be
ignored

» a subgradient is a gradient for “abrupt” functions such as the
hinge loss

UNIVERSITY OF
GOTHENBURG

practical information

> solve the assignment individually
> two lab sessions next week

» deadline one week later: September 24

UNIVERSITY OF
GOTHENBURG

seminar tomorrow

» Peter will present a classical paper about document polarity
classification

» I'll present some additional material

UNIVERSITY OF
GOTHENBURG

lecture next week

» on Friday — so no seminar next week
» neural networks:

» non-linear classifiers
» they are also implemented using objective functions and
optimization

UNIVERSITY OF
GOTHENBURG

	logistic regression
	support vector machines
	basic optimization
	practical information

