
Machine Learning for NLP
Lecture 3: Optimization and machine learning

UNIVERSITY OF

GOTHENBURG

Richard Johansson

September 8, 2016

-20pt

UNIVERSITY OF

GOTHENBURG

linear classi�ers

I a linear classi�er is a classi�er that is de�ned in terms of a
scoring function like this

score = w · x

I explanation of the parts:
I x is a vector with features of what we want to classify (e.g.

made with a DictVectorizer)
I w is a vector representing which features the classi�er thinks

are important
I · is the dot product between the two vectors

I for now, we'll assume that there are two classes: binary
classi�cation

I return the �rst class if the score > 0
I . . . otherwise the second class

I the essential idea: features are scored independently

-20pt

UNIVERSITY OF

GOTHENBURG

geometric view

I geometrically, a linear classi�er can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

-20pt

UNIVERSITY OF

GOTHENBURG

optimization and machine learning

I we will now consider models that are less ad-hoc than the
perceptron

I idea: de�ne an objective function based on the fundamental
tradeo� in machine learning:

I how well we handle the training set (loss)
I simplicity of the model (regularization)

I . . . and then the training consists of applying optimization

techniques to �nd the best w

I we will consider two models:
I logistic regression, based on probability
I support vector classi�er, based on geometry

-20pt

UNIVERSITY OF

GOTHENBURG

in scikit-learn

I LR is called sklearn.linear_model.LogisticRegression

I SVM is called sklearn.svm.LinearSVC

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

-20pt

UNIVERSITY OF

GOTHENBURG

overview

logistic regression

support vector machines

basic optimization

practical information

-20pt

UNIVERSITY OF

GOTHENBURG

linear classi�ers with probabilities?

I linear classi�ers select the outputs based on a scoring function:

score = w · x

I how to convert the scores into probabilities?

I idea: use a logistic or sigmoid function:

P(positive output|x) = 1

1+ e−score

where e−score = math.exp(-score)

I this is formally a probability: always between 0 and 1, sum of
probablities of possible outcomes = 1

-20pt

UNIVERSITY OF

GOTHENBURG

the logistic function

-20pt

UNIVERSITY OF

GOTHENBURG

conversely

P(negative output|x) = 1

1+ escore

-20pt

UNIVERSITY OF

GOTHENBURG

making it a bit more compact

I if we code the positive class as +1 and the negative class
as -1, then we can write the probability a bit more neatly:

P(y |x) = 1

1+ e−y ·score

-20pt

UNIVERSITY OF

GOTHENBURG

recall: the maximum likelihood principle

I select the model that gives a high probability to the data

I in our case, the �model� is the weight vector w

I adjust w so that each output label gets a high probability

-20pt

UNIVERSITY OF

GOTHENBURG

the likelihood function

I formally, the �probability of the data� is de�ned by the
likelihood function

I this is the product of the probabilities of all m individual
training instances:

L(w) = P(y1|x1) · . . . · P(yT |xm)

I in our case, this means

L(w) =
1

1+ e−y1·(w ·x1)
· . . . · 1

1+ e−ym·(w ·xm)

-20pt

UNIVERSITY OF

GOTHENBURG

rewriting a bit. . .

I we rewrite the previous formula

L(w) =
1

1+ e−y1·(w ·x1)
· . . . · 1

1+ e−ym·(w ·xm)

I as

− log L(w) = Loss(w , x1, y1) + . . .+ Loss(w , xm, ym)

where

Loss(w , x , y) = log(1+ exp(−y · (w · x)))

is called the log loss function

-20pt

UNIVERSITY OF

GOTHENBURG

plot of the log loss

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

-20pt

UNIVERSITY OF

GOTHENBURG

recall: the fundamental tradeo� in machine learning

I goodness of �t: the learned classi�er should be able
to correctly classify the examples in the training data

I regularization: the classi�er should be simple

I but so far in our LR description, we've just taken care
of the �rst part!

-20pt

UNIVERSITY OF

GOTHENBURG

what does it mean to �keep the classi�er simple�?

I concretely, how can we add regularization to the LR model?

I the most common approach is to add a term that keeps the
weights small

I formally, we say that the the squared length (norm) of the
weight vector should be small:

|w |2 = w1 · w1 + . . .+ wn · wn = w ·w

-20pt

UNIVERSITY OF

GOTHENBURG

combining the pieces

I we combine the loss and the regularizer:∑
Loss(w , x i , yi) + λ · |w |2

I in this formula, λ is a �tweaking� parameter that controls the
tradeo� between loss and regularization

I note: in some formulations (including scikit-learn), there is a
parameter C instead of the λ that is put before the loss

-20pt

UNIVERSITY OF

GOTHENBURG

this still doesn't look implementable. . .

I we have an objective function that we want to minimize:∑
Loss(w , x i , yi) + λ · |w |2

I but we still don't know how to convert this into code!

-20pt

UNIVERSITY OF

GOTHENBURG

overview

logistic regression

support vector machines

basic optimization

practical information

-20pt

UNIVERSITY OF

GOTHENBURG

geometric view

I geometrically, a linear classi�er can be interpreted as
separating the vector space into two regions with a line (plane,
hyperplane)

-20pt

UNIVERSITY OF

GOTHENBURG

margin of separation

I the margin γ denotes how well w separates the classes:

Margin 2

Margin 1

-20pt

UNIVERSITY OF

GOTHENBURG

large margins are good

I a result from statistical learning theory:

expected test error = training error+ BigUglyFormula(
1

γ2
)

I larger margin → better generalization

-20pt

UNIVERSITY OF

GOTHENBURG

support vector machines

I support vector machines (SVMs) or support vector
classi�ers (SVC) are linear classi�ers constructed by selecting
the w that maximizes the margin

I note: the solution depends only on the borderline examples:
the support vectors

-20pt

UNIVERSITY OF

GOTHENBURG

soft-margin SVMs

I in some cases the dataset is inseparable, or nearly inseparable

I soft-margin SVM: allow some examples to be disregarded
when maximizing the margin

ξi

B) Soft Margin SVM A) Hard Margin SVM

ix
r

ix
r

-20pt

UNIVERSITY OF

GOTHENBURG

stating the SVM as using an objective function

I the hard-margin and soft-margin SVM can be stated
mathematically in a number of ways

I we'll skip the details, but with a bit of work we can show that
the soft-margin SVM can be stated as minimizing∑

Loss(w , x i , yi) + λ · |w |2

where

Loss(w , x , y) = max(0, 1− y · (w · x))

is called the hinge loss

-20pt

UNIVERSITY OF

GOTHENBURG

plot of the hinge loss

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

-20pt

UNIVERSITY OF

GOTHENBURG

overview

logistic regression

support vector machines

basic optimization

practical information

-20pt

UNIVERSITY OF

GOTHENBURG

optimization

I what is optimization?

I unconstrained optimization: �nd the x that gives us the
minimal (or maximal) value of some function f :

min
x

f (x)

I constrained optimization: �nd the x that gives us the
minimal (or maximal) value of f , where x satis�es some extra
conditions:

min
x

f (x)

such that x > 0

I today unconstrained optimization only

-20pt

UNIVERSITY OF

GOTHENBURG

one-variable example

−3 −2 −1 0 1 2 3
−0.5

0.0

0.5

1.0

1.5

minimum

-20pt

UNIVERSITY OF

GOTHENBURG

two-variable example

-20pt

UNIVERSITY OF

GOTHENBURG

remember your highschool calculus. . .

I in your early school days, you might have seen the derivative
of a function

I intuition: the derivative measures the slope

−3 −2 −1 0 1 2 3
−0.5

0.0

0.5

1.0

1.5

minimum

I if a �nice� function has a maximum or minimum, then the
derivative will be zero there

-20pt

UNIVERSITY OF

GOTHENBURG

the gradient

I the multidimensional equivalent of the derivative is called the
gradient

I if f is a function of n variables, then the gradient is an
n-dimensional vector, often written ∇f (x)

I intuition: the gradient points in the uphill direction

I again: the gradient is zero if we have an optimum

-20pt

UNIVERSITY OF

GOTHENBURG

computing the gradient

-20pt

UNIVERSITY OF

GOTHENBURG

gradient descent

I as we saw, the gradient points in the uphill direction:

I this intuition leads to a simple idea for �nding the minimum:
I take a small step in the direction opposite to the gradient
I repeat until the gradient is close enough to zero

I this is called gradient descent

-20pt

UNIVERSITY OF

GOTHENBURG

gradient descent, pseudocode

I the same thing again, in pseudocode:

1. set x to some initial value, and select a suitable step size c

2. compute the gradient ∇f (x)
3. if ∇f (x) is small enough, we are done
4. otherwise, subtract c · ∇f (x) from x and go back to step 2

I conversely, to �nd the maximum we can do gradient ascent:
then we instead add c · ∇f (x) to x

-20pt

UNIVERSITY OF

GOTHENBURG

in Python

def gradient_ascent(x_init, y_init,

threshold = 0.001,

steplength = 0.01):

x = x_init

y = y_init

done = False

while not done:

gxy = gradient_of_my_function(x, y)

x += steplength * gxy[0]

y += steplength * gxy[1]

if numpy.linalg.norm(gxy) < threshold:

done = True

return (x, y)

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

I let's optimize this function:

def f(x, y):

return math.exp(-(x-2)**2 - (y+1)**2)

I its gradient is

def gradient_of_f(x, y):

return (-2*(x-2)*f(x, y), -2*(y+1)*f(x, y))

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example

−1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.150

0
.3
0
0

0.450

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

will we always reach the top?

I yes, if
I there is actually a top
I the step is short enough
I the surface isn't too jumpy

I smarter versions of gradient ascent/descent try to adapt the
step length so that we don't go too slow in the beginning, or
bounce around the top at the end

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

I let's optimize another function:

def f(x, y):

return math.exp(-(x-2)**2 - 0.5*(y+1)**2) \

+ 0.7 * math.exp(-0.7*(x+1)**2 - 0.8*(y-1)**2)

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

gradient ascent example (2)

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

0.150

0
.1
5
0

0.300

0
.3
0
0

0
.4
5
0

0.450

0.600

0.600

0.750

0.900

-20pt

UNIVERSITY OF

GOTHENBURG

local and global maxima/minima

I some functions have local maxima or minima

I these functions are harder to optimize because the local (but
not global) optima also have a gradient of 0

-20pt

UNIVERSITY OF

GOTHENBURG

convex and concave functions

I a function is convex if it always curves downwards

I equivalently, if we draw a line between two points of the
surface, the surface is always below the line

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

I the point of this: if we �nd a local optimum (gradient is 0) of
a convex function, this is guaranteed to be the minimum

I conversely, a function is concave if it always curves upwards

-20pt

UNIVERSITY OF

GOTHENBURG

stochastic gradient descent

I in some cases it is cumbersome to compute the gradient
I because it depends on all the data in the training set

I stochastic gradient descent: simplify the computation by
computing the gradient using just a small part

I typically, a single training example

I pseudocode:

1. set w to some initial value, and select a suitable step size c

2. select a single training instance x

3. compute the gradient ∇f (w) using x only

4. if we are �done�, stop
5. otherwise, subtract c · ∇f (w) from w and go back to step 2

I (stopping criterion shouldn't be based on just a single instance)

-20pt

UNIVERSITY OF

GOTHENBURG

SVM and LR have convex objective functions

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

+

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

+

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

-20pt

UNIVERSITY OF

GOTHENBURG

optimizing SVM and LR

I since the objective functions of SVM and LR are convex, we
can �nd w by stochastic gradient descent

I pseudocode:
I set w to some initial value, e.g. all zero
I iterate a �xed number of times:

I select a single training instance x
I select a �suitable� step length η
I compute the gradient of the hinge loss or log loss
I subtract step length · gradient from w

I note the similarity to the perceptron!

-20pt

UNIVERSITY OF

GOTHENBURG

overview

logistic regression

support vector machines

basic optimization

practical information

-20pt

UNIVERSITY OF

GOTHENBURG

some comments about assignment 2

I implement SVM and LR and test them in a document classi�er

I we'll use the Pegasos algorithm � see assignment page

I Pegasos works in an iterative fashion similar to the perceptron
I . . . so if you start from my perceptron code this will be a breeze

I optional tasks to speed up the implementation using sparse
vectors

-20pt

UNIVERSITY OF

GOTHENBURG

some clari�cations about the paper

I the important part of the paper is the pseudocode in Figure 1

I Pegasos adapts the step length η over time: long steps in the
beginning, smaller in the end

I 〈w , x〉 is the dot product w · x
I S is the training set, |S | is the size of S

I T is the number of steps in the algorithm.
I this is a bit di�erent from our perceptron, where we speci�ed

the number of times to process the whole training set.

I the optional line is there for theoretical reasons and can be
ignored

I a subgradient is a gradient for �abrupt� functions such as the
hinge loss

-20pt

UNIVERSITY OF

GOTHENBURG

practical information

I solve the assignment individually

I two lab sessions next week

I deadline one week later: September 24

-20pt

UNIVERSITY OF

GOTHENBURG

seminar tomorrow

I Peter will present a classical paper about document polarity
classi�cation

I I'll present some additional material

-20pt

UNIVERSITY OF

GOTHENBURG

lecture next week

I on Friday � so no seminar next week

I neural networks:
I non-linear classi�ers
I they are also implemented using objective functions and

optimization

	logistic regression
	support vector machines
	basic optimization
	practical information

