Machine learning for natural language processing
Reading course, Spring 2014

UNIVERSITY OF GOTHENBURG

Sprak
BANKEN

Richard Johansson

January 28, 2014

overview

practical matters

UNIVERSITY OF GOTHENBURG

Sprak
BANKEN

D¢

this course

» machine learning for natural language processing

» you have different backgrounds: some are beginners and some
are already experienced
» this is an opportunity to complete your knowledge of ML or
more NLP, or both

» as long as you are able to write and present comprehensibly for
a general audience in the end

NIVERSITY OF GOTHENBURG

possible organization of the course: up for discussion!

» introduction (today)
» reading period
> seminars

> writing papers

Sprak

UNIVERSITY OF GOTHENBURG EA NKEN

examination

> write a paper
» something like a conference paper
» (optionally) submit it to a conference

> present it at a seminar

Sprak:

UNIVERSITY OF GOTHENBURG EA NKEN

course webpage

> http://spraakbanken.gu.se/swe/personal/richard/mlnlp

» contains practical information regarding the course

NIVERSITY OF GOTHENBURG

http://spraakbanken.gu.se/swe/personal/richard/mlnlp

study material

» books
> papers

» Nivre's lectures

Sprak:

UNIVERSITY OF GOTHENBURG EA NKEN

overview

a motivating example

Sprak

$i)) UNIVERSITY OF GOTHENBURG EA NKEN

[m] = = =

in general: what is machine learning?

» assume we want to build some prediction function:
» given a document, say whether it is sports-related or not
» given an image, say whether or not it contains a human face
» given a sentence, predict its syntactic analysis
» instead of hand-coding the function, some part of it is tuned
automatically (learned) from examples
» central theoretical challenge: how to induce “knowledge” from
given examples, so we can make predictions in new situations

NIVERSITY OF GOTHENBURG

example: grouping documents by customer sentiment

> our task: develop a program that groups customer reviews into
positive and negative classes (given the text only)

* Just plain lame., August 14, 2007
By Gary Smith "Editor. Handgun Hunter Magazine” (Texas) - See all my reviews

Thi is from: Garden & Gun (Magazine)

This magazine has a catchy title and very nice graphics and photography. What the premier issue lacks is anything of any
substance about guns or hunting. | wonder if they actually read their own title. In my opinion these guys are nothing more than
posers from the guns/hunting standpoint and many of the photographs appear to be staged. In particular, there are a couple pictures
of a woman shooting a bow and arrow. Mot only is she showing extremely poor form she's using the equipment shown in the
photographs incorrectly. This is tantamount to using spinning gear with the reel positioned over the top of the fishing pole. If they
want to cover hunting they should at least hire a photo editor that knows what (s)he's looking at. If you want a hunting magazine buy
something else

UNIVERSITY OF GOTHENBURG

one approach: use a sentiment wordlist

. for instance the MPQA list

type=strongsubj len=1 wordl=wretchedly posl=anypos stemmedl=n priorpolarity=negative
type=strongsubj] len=1 wordl=wretchedness posl=noun stemmedl=n priorpolarity=negative
type=weaksubj len=1 wordl=writhe posl=verb stemmedl=y priorpolarity=negative
type=weaksubj len=1 wordl=wrong posl=adj stemmedl=n priorpolarity=negative
type=weaksubj len=1 wordl=wrong posl=anypos stemmedl=y priorpolarity=negative
type=weaksub] len=1 wordl=wrongful posl=adj stemmedl=n priorpolarity=negative
type=strongsubj len=1 wordl=wrongly posl=anypos stemmedl=y priorpolarity=negative
type=weaksubj len=1 wordl=wrought posl=adj stemmedl=n priorpolarity=negative
type=weaksub] len=1 wordl=wrought posl=noun stemmedl=n priorpolarity=negative

type=strongsubj
type=strongsub
type=strongsub
type=strongsub
type=strongsub
type=strongsub
type=strongsub]
type=strongsub
type=strongsub
type=strongsub

len=1
len=1
len=1
len=1
len=1
len=1
len=1
len=1
len=1
len=1

wordl=wry posl=adj stemmedl=n priorpolarity=positive
wordl=yawn posl=noun stemmedl=n priorpolarity=negative
wordl=yawn posl=verb stemmedl=y priorpolarity=negative
wordl=yeah posl=anypos stemmedl=y priorpolarity=neutral
wordl=yearn posl=verb stemmedl=y priorpolarity=positive
wordl=yearning posl=noun stemmedl=n priorpolarity=positive
wordl=yearningly posl=anypos stemmedl=n priorpolarity=positive
wordl=yelp posl=verb stemmedl=y priorpolarity=negative
wordl=yep posl=anypos stemmedl=y priorpolarity=positive
wordl=yes posl=anypos stemmedl=y priorpolarity=positive

type=weaksubj len=1 wordl=youthful posl=adj stemmedl=n priorpolarity=positive

type=strongsubj
type=strongsub]
type=strongsub
type=strongsub
type=strongsub
type=strongsub

len=1
len=1
len=1
len=1
len=1
len=1

wordl=zeal posl=noun stemmedl=n priorpolarity=positive
wordl=zealot posl=noun stemmedl=n priorpolarity=negative
wordl=zealous posl=adj stemmedl=n priorpolarity=negative
wordl=zealously posl=anypos stemmedl=n priorpolarity=negative
wordl=zenith posl=noun stemmedl=n priorpolarity=positive
wordl=zest posl=noun stemmedl=n priorpolarity=positive

UNIVERSITY OF GOTHENBURG

document sentiment by summing word scores

» store all MPQA sentiment values in a table as numerical values
» e.g. 2 points for strong positive, -1 point for weak negative

» predict the overall sentiment value of the document by
summing the scores of each word occurring

def guess_sentiment(document, weights):
score = 0
for word in document:
score += weights.get(word, 0)
if score >= 0:
return "pos"
else:
return "neg"

NIVERSITY OF GOTHENBURG

experiment

» we evaluate on 50% of a sentiment dataset
http://www.cs.jhu.edu/"mdredze/datasets/sentiment/

def evaluate(labeled_documents, weights):
ncorrect = 0
for _, label, _, document in labeled_documents:
guess = guess_sentiment (document, weights)
if guess == label:
ncorrect += 1
return float(ncorrect) / len(labeled_documents)

» this is a balanced dataset, coin-toss accuracy would be 50%
» with MPQA, we get an accuracy of 59.5%

NIVERSITY OF GOTHENBURG

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

can we do better?

> it's hard to set the word weights
» what if we don't even have a resource such as MPQA?

» can we set the weights automatically?

NIVERSITY OF GOTHENBURG

an idea for setting the weights automatically

» start with an empty weight table (instead of using MPQA)

» classify documents according to the current weight table
» each time we misclassify, change the weight table a bit

» if a positive document was misclassified, add 1 to the weight
of each word in the document
» and conversely . ..

def train_by_errors(labeled_documents, number_iterations):
weights = {}
for iteration in range(number_iterations):
for _, label, _, document in labeled_documents:
guess = guess_sentiment(document, weights)
if label == "pos" and guess == "neg":
for word in document:
weights[word] = weights.get(word, 0) + 1
elif label == "neg" and guess == "pos":
for word in document:
weights[word] = weights.get(word, 0) - 1
return weights
UNIVERSITY OF GOTHENBURG

new experiment

» we compute the weights using 50% of the sentiment data and
test on the other half

» the accuracy is 81.4%, up from the 59.5% we had when we
used the MPQA

» machine learning doesn’t have to be harder than this!

» train_by_errors is called the perceptron algorithm and is
one of the most widely used machine learning algorithms

UNIVERSITY OF GOTHENBURG B

examples of the weights

amazing 171
easy 124
perfect 109
highly 108
five 107
excellent 104
enjoy 93

job 92
question 90
wonderful 90
performance 83
those 80

r&b 80

loves 79

best 78
recommended 77
favorite 77
included 76
medical 75

america 74
UNIVERSITY OF GOTHENBURG

waste -175

worst -168

boring -154

poor -134

¢ -130
unfortunately -122
horrible -118

ok -111
disappointment -109
unless -108

called -103
example -100

bad -100

save -99

bunch -98

talk -96

useless -95

author -94

effort -94

oh -94

a geometric view of the same thing

> in the literature, typically a geometric formulation is used:
given some object x, compute the score

w - f(x)

and return “positive” if the score > 0, otherwise “negative”

» f(x) is a feature vector representing the object x, and w is a
weight vector returned by the learning procedure

» for instance, the document “useless waste” might be
[0,0,0,1,0,0,1,0,0,0,..]

» ...and wy could be -96 and wy -175

» in document classification, the dimensions typically correspond
to word types

> in general, x can be any object, not just a document
UNIVERSITY OF GOTHENBURG

the same thing with scikit-learn

> to train a classifier:

vec = DictVectorizer()

clf = Perceptron(n_iter=20)

clf.fit(vec.fit_transform(train_docs),
numpy .array(train_targets))

> to classify a new instance:

guess = clf.predict(vec.transform(doc))

NIVERSITY OF GOTHENBURG

other types of classifiers

» there are many other approaches apart from the perceptron
» http://scikit-learn.org/stable/supervised_learning.html

» why?

NIVERSITY OF GOTHENBURG

http://scikit-learn.org/stable/supervised_learning.html

what if we have more than two categories?

» for instance [’dvd’, ’books’, ’health’, ’music?,
Ycamera’, ’software’]

> a possible solution: instead of one weight for each word, one
weight for each word—category pair

def score_category(document, weights, category):
score = 0
for word in document:
score += weights.get((word, category), 0)
return score

def guess_category(document, weights, categories):
return max(categories, key=lambda c: score_category(document, weights, c))

UNIVERSITY OF GOTHENBURG

perceptron training with multiple categories

» if a document is misclassified: increase the weights for the
correct label and decrease them for the incorrect guess

def train_by_errors(labeled_documents, categories, number_iterations):

weights = {}
for iteration in range(number_iterations):
for label, _, _, document in labeled_documents:

guess = guess_category(document, weights, categories)
if label != guess:

for word in document:
weights[(word, label)] weights.get((word,label), 0) + 1
weights[(word, guess)] = weights.get((word,guess), 0) - 1

return weights

UNIVERSITY OF GOTHENBURG B

a geometric view (multiple categories)

» given some object x, for each possible output y compute the
score

w-f(x,y)
and return the highest-scoring y

» f(x,y) is a feature representation of the input—output pair

UNIVERSITY OF GOTHENBURG

structured prediction

» given an input x (e.g. a sentence), predict an output y (e.g. a
tag sequence or a parse tree)

> a typical solution is similar to what we did in the
multiple-category case: compute a score defined as

w- f(xu)/)

and maximize w.r.t. y

» ... but the maximization step depends on the task, e.g. Viterbi
for taggers and CKY for parsers

UNIVERSITY OF GOTHENBURG

overview

a quick overview of the suggested reading topics

Sprak
UNIVERSITY OF GOTHENBURG BA N K E N

[m] = = =

	practical matters
	a motivating example
	a quick overview of the suggested reading topics

