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this course

I machine learning for natural language processing

I you have di�erent backgrounds: some are beginners and some
are already experienced

I this is an opportunity to complete your knowledge of ML or
more NLP, or both

I as long as you are able to write and present comprehensibly for
a general audience in the end
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possible organization of the course: up for discussion!

I introduction (today)

I reading period

I seminars

I writing papers
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examination

I write a paper
I something like a conference paper
I (optionally) submit it to a conference

I present it at a seminar
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course webpage

I http://spraakbanken.gu.se/swe/personal/richard/mlnlp

I contains practical information regarding the course

http://spraakbanken.gu.se/swe/personal/richard/mlnlp
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study material

I books

I papers

I Nivre's lectures
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in general: what is machine learning?

I assume we want to build some prediction function:
I given a document, say whether it is sports-related or not
I given an image, say whether or not it contains a human face
I given a sentence, predict its syntactic analysis

I instead of hand-coding the function, some part of it is tuned

automatically (learned) from examples

I central theoretical challenge: how to induce �knowledge� from

given examples, so we can make predictions in new situations
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example: grouping documents by customer sentiment

I our task: develop a program that groups customer reviews into

positive and negative classes (given the text only)
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one approach: use a sentiment wordlist

I . . . for instance the MPQA list
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document sentiment by summing word scores

I store all MPQA sentiment values in a table as numerical values

I e.g. 2 points for strong positive, -1 point for weak negative

I predict the overall sentiment value of the document by

summing the scores of each word occurring

def guess_sentiment(document, weights):

score = 0

for word in document:

score += weights.get(word, 0)

if score >= 0:

return "pos"

else:

return "neg"
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experiment

I we evaluate on 50% of a sentiment dataset

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

def evaluate(labeled_documents, weights):

ncorrect = 0

for _, label, _, document in labeled_documents:

guess = guess_sentiment(document, weights)

if guess == label:

ncorrect += 1

return float(ncorrect) / len(labeled_documents)

I this is a balanced dataset, coin-toss accuracy would be 50%

I with MPQA, we get an accuracy of 59.5%

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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can we do better?

I it's hard to set the word weights

I what if we don't even have a resource such as MPQA?

I can we set the weights automatically?
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an idea for setting the weights automatically

I start with an empty weight table (instead of using MPQA)

I classify documents according to the current weight table

I each time we misclassify, change the weight table a bit
I if a positive document was misclassi�ed, add 1 to the weight

of each word in the document
I and conversely . . .

def train_by_errors(labeled_documents, number_iterations):

weights = {}

for iteration in range(number_iterations):

for _, label, _, document in labeled_documents:

guess = guess_sentiment(document, weights)

if label == "pos" and guess == "neg":

for word in document:

weights[word] = weights.get(word, 0) + 1

elif label == "neg" and guess == "pos":

for word in document:

weights[word] = weights.get(word, 0) - 1

return weights
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new experiment

I we compute the weights using 50% of the sentiment data and

test on the other half

I the accuracy is 81.4%, up from the 59.5% we had when we

used the MPQA

I machine learning doesn't have to be harder than this!
I train_by_errors is called the perceptron algorithm and is

one of the most widely used machine learning algorithms
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examples of the weights

amazing 171

easy 124

perfect 109

highly 108

five 107

excellent 104

enjoy 93

job 92

question 90

wonderful 90

performance 83

those 80

r&b 80

loves 79

best 78

recommended 77

favorite 77

included 76

medical 75

america 74

waste -175

worst -168

boring -154

poor -134

` -130

unfortunately -122

horrible -118

ok -111

disappointment -109

unless -108

called -103

example -100

bad -100

save -99

bunch -98

talk -96

useless -95

author -94

effort -94

oh -94
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a geometric view of the same thing

I in the literature, typically a geometric formulation is used:

given some object x , compute the score

w · f (x)

and return �positive� if the score > 0, otherwise �negative�

I f (x) is a feature vector representing the object x , and w is a
weight vector returned by the learning procedure

I for instance, the document �useless waste� might be

[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, . . .]

I . . . and w4 could be -96 and w7 -175

I in document classi�cation, the dimensions typically correspond

to word types

I in general, x can be any object, not just a document
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the same thing with scikit-learn

I to train a classi�er:

vec = DictVectorizer()

clf = Perceptron(n_iter=20)

clf.fit(vec.fit_transform(train_docs),

numpy.array(train_targets))

I to classify a new instance:

guess = clf.predict(vec.transform(doc))
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other types of classi�ers

I there are many other approaches apart from the perceptron

I http://scikit-learn.org/stable/supervised_learning.html

I why?

http://scikit-learn.org/stable/supervised_learning.html
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what if we have more than two categories?

I for instance ['dvd', 'books', 'health', 'music',

'camera', 'software']

I a possible solution: instead of one weight for each word, one

weight for each word�category pair

def score_category(document, weights, category):

score = 0

for word in document:

score += weights.get((word, category), 0)

return score

def guess_category(document, weights, categories):

return max(categories, key=lambda c: score_category(document, weights, c))
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perceptron training with multiple categories

I if a document is misclassi�ed: increase the weights for the

correct label and decrease them for the incorrect guess

def train_by_errors(labeled_documents, categories, number_iterations):

weights = {}

for iteration in range(number_iterations):

for label, _, _, document in labeled_documents:

guess = guess_category(document, weights, categories)

if label != guess:

for word in document:

weights[(word, label)] = weights.get((word,label), 0) + 1

weights[(word, guess)] = weights.get((word,guess), 0) - 1

return weights
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a geometric view (multiple categories)

I given some object x , for each possible output y compute the

score

w · f (x , y)

and return the highest-scoring y

I f (x , y) is a feature representation of the input�output pair



-20pt

structured prediction

I given an input x (e.g. a sentence), predict an output y (e.g. a

tag sequence or a parse tree)

I a typical solution is similar to what we did in the

multiple-category case: compute a score de�ned as

w · f (x , y)

and maximize w.r.t. y

I . . . but the maximization step depends on the task, e.g. Viterbi

for taggers and CKY for parsers
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