

Statistical Methods for NLP LT 2202

Clustering with the *k*-means algorithm

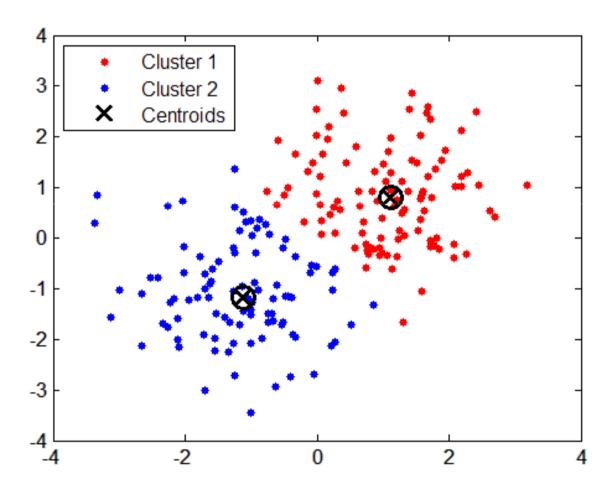
March 6, 2014 Richard Johansson

Unsupervised learning

- So far, we have seen how to train classifiers by learning from hand-tagged training sets
- What if there are no tagged data?
- Examples:
 - Discover categories of documents
 - –Discover syntactic relations
- This is called unsupervised learning or clustering

Preliminaries

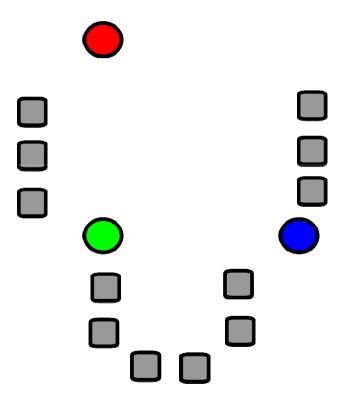
- We have a collection of objects (e.g. documents)
- Assume that each object can be represented as a point in a geometric space
- Typically the points are constructed by using word frequencies (bag of words)
 - -See appendix for details



k-means clustering

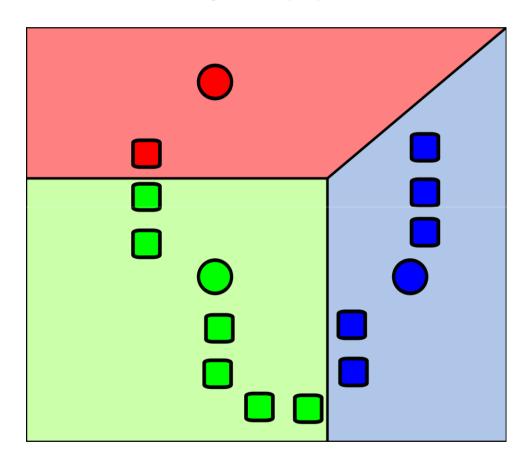
- Assume that there are k classes
- For every class, create a **centroid**: a point that is in the center of the class
- Find centroids so that all the points in each class are as near as possible
- Computationally hard to do exactly

k-means clustering

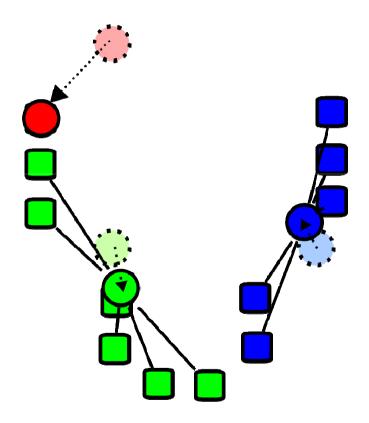


k-means clustering: iterative approach

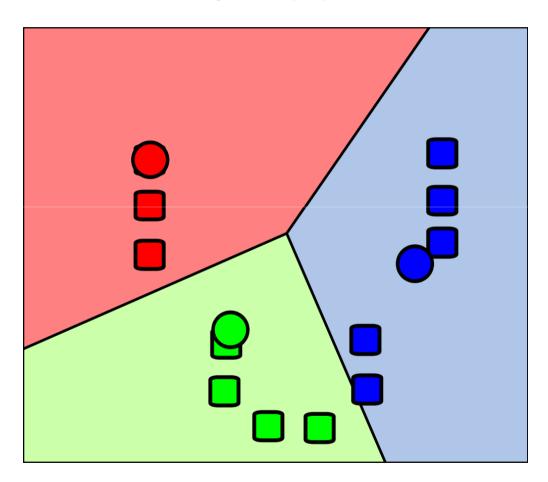
- Start with a random assignment into clusters
- 2. Compute centroids of each cluster
- 3. Assign each point to the cluster of the nearest centroid
- 4. If any change, repeat from step 2



K-means example (1)



K-means example (2)



K-means example (3)

K-means example (4)

Implementations

- *k*-means is simple and popular and is implemented in many software libraries
 - -NLTK
 - -Scikit-learn

Appendix

Bag of words

- In a bag-of-words representation, we assign one dimension for each word in the vocabulary
- To represent a document, we build a list of word frequencies:

```
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, \dots]
```

Very often used in document classification

Bag of words: example

"The same year, the Company bought the Waterstone's chain of bookshops"

Word frequencies in this text:

```
the: 3 same: 1 year: 1 ...
```

[0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 1, 0, ...]

Implementation note: sparse vectors

- In NLP, most features are very rare
 - -Word, bigram features
- Assume that the feature list is [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- It is more efficient to use a sparse representation:

Index list: [6, 12]

Value list: [1, 2]

Alternatively: list of pairs: [(6, 1), (12, 2)]