
Statistical methods in NLP
Introduction

UNIVERSITY OF

GOTHENBURG

Richard Johansson

January 19, 2016

-20pt

UNIVERSITY OF

GOTHENBURG

today

I course matters

I analysing numerical data with Python

I basic notions of probability

I simulating random events in Python

-20pt

UNIVERSITY OF

GOTHENBURG

overview

overview of the course

analysing numerical data in Python

basics of probability theory

randomness in Python

-20pt

UNIVERSITY OF

GOTHENBURG

why statistics in NLP and linguistics?

I in experimental evaluations:
I a HMM tagger T1 is tested on a sample of 1000 words and

gets and accuracy rate of 0.92 (92%). How precise is this
measurement?

I a Brill tagger T2 is tested on the same sample and gets an
accuracy rate of 0.94. Is the Brill tagger signi�cantly better
than the HMM tagger?

-20pt

UNIVERSITY OF

GOTHENBURG

why statistics in NLP and linguistics?

I in investigations of linguistic data:
I what is the probability of object fronting in Dutch?
I do speakers a�ected by Alzheimer's disease exhibit a
signi�cantly smaller vocabulary?

-20pt

UNIVERSITY OF

GOTHENBURG

why statistics in NLP and linguistics?

I in language processing systems:
I what is the probability of English case being translated to

Swedish kapsel?
I . . . of a noun if the previous word was a verb?

I data-driven NLP systems: we specify a general model and tune
speci�c parameters by observing our data

-20pt

UNIVERSITY OF

GOTHENBURG

course overview

I theoretical part:
I probability theory
I statistical inference
I statistical methods in experiments

I applications in NLP:
I classi�ers, taggers, parsers, topic models
I machine translation

-20pt

UNIVERSITY OF

GOTHENBURG

course work

I lectures � all in L308 (except tomorrow)

I lab sessions � in the computer lab G212 (lab 4)

I always on Tuesdays at 10�12 (except March 15) or Thursdays
at 13�15

I teachers:
I Richard: gives most of the lectures and supervises the two

introductory computer exercises
I Prasanth: machine translation lecture and assignment
I Mehdi: supervises and grades the other assignments

-20pt

UNIVERSITY OF

GOTHENBURG

examination

I 2 mandatory computer exercises

I 3 mandatory programming assignments
I text categorization
I evaluation
I PoS tagger implementation

I 2 optional programming assignments for VG
I topic modeling
I machine translation

-20pt

UNIVERSITY OF

GOTHENBURG

deadlines

I computer exercises: a few days

I programming assignments: 2 weeks after lab session

I VG assignments: March 28

-20pt

UNIVERSITY OF

GOTHENBURG

literature

I Manning and Schütze: Foundations of Statistical Natural
Language Processing

I http://nlp.stanford.edu/fsnlp/

http://nlp.stanford.edu/fsnlp/

-20pt

UNIVERSITY OF

GOTHENBURG

literature linked from the web page

I Krenn and Samuelsson: The Linguist's Guide to Statistics �
Don't Panic!

I alternative to M&S for the theoretical part of the course

I lecture notes by Michael Collins
I for the NLP part
I more in-depth than M&S

I Mitchell: Naïve Bayes and Logistic Regression

I a few other research papers

-20pt

UNIVERSITY OF

GOTHENBURG

overview

overview of the course

analysing numerical data in Python

basics of probability theory

randomness in Python

-20pt

UNIVERSITY OF

GOTHENBURG

summary statistics and plotting

I if we have some collection of data, it can be useful to
summarize the data using plots and high-level measures

I a useful skill in general when carrying out experiments

I and we'll use it in the two computer exercises

-20pt

UNIVERSITY OF

GOTHENBURG

some useful Python libraries we'll use in this course

I SciPy: a Python library for statistics and math in general
I http://www.scipy.org/

I NumPy: e�cient mathematical functions
I http://www.numpy.org/

I matplotlib: using Python to draw diagrams
I http://matplotlib.org/

http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/

-20pt

UNIVERSITY OF

GOTHENBURG

an example dataset

177 67 m

177 77 m

175 87 m

154 47 f

157 56 f

152 53 f

165 49 f

165 66 f

165 63 m

162 54 f

167 62 m

167 79 f

167 58 f

165 61 f

read the data

data = []

with open('bodies.txt') as f:

for l in f:

h, w, s = l.split()

data.append((int(h), int(w), s))

heights = [h for h, _, _ in data]

weights = [w for _, w, _ in data]

m_heights = [h for h, _, s in data if s == 'm']

m_weights = [w for _, w, s in data if s == 'm']

f_heights = [h for h, _, s in data if s == 'f']

f_weights = [w for _, w, s in data if s == 'f']

-20pt

UNIVERSITY OF

GOTHENBURG

plotting the data

I import the plotting library
from matplotlib import pyplot as plt

I plot a height/weight plot, each point as an 'x'
plt.plot(heights, weights, 'x')

I plot height/weight plot by gender
plt.plot(m_heights, m_weights, 'o', f_heights, f_weights, 'x')

I save the plot to a �le
plt.savefig('myplot.pdf')

I alternatively, draw the plot on the screen
plt.show()

150 155 160 165 170 175 180 185 190 195
40

50

60

70

80

90

100

110

120

150 155 160 165 170 175 180 185 190 195
40

50

60

70

80

90

100

110

120

-20pt

UNIVERSITY OF

GOTHENBURG

plotting histograms

I a histogram is a diagram that shows how the data points are
distributed

I the x axis shows �bins�, e.g. 165�170 cm, and the y axis shows
the number of data points in that bin

I here's how we draw a histogram with matplotlib:
plt.hist(heights, bins=10)

140 150 160 170 180 190 200
0

5

10

15

20

25

30

35

40

45

-20pt

UNIVERSITY OF

GOTHENBURG

some basic data analysis

I maximal and minimal values:

max_f_height = max(f_heights)

print('Tallest female: {0} cm'.format(max_f_height))

I sample mean (average) and median:

mean_m_weight = scipy.mean(m_weights)

print('Mean male weight: {0} kgs'.format(mean_m_weight))

median_f_weight = scipy.median(f_weights)

print('Median female weight: {0} kgs'.format(median_f_weight))

-20pt

UNIVERSITY OF

GOTHENBURG

measures of dispersion: variance and standard deviation

I recall that the mean x̄ of a dataset x is de�ned

x̄ =
1

n

n∑
i=1

xi

I the sample variance V (x) of a dataset x measures how much
x is concentrated to the mean

I it is the mean of the squares of the o�sets from the mean

V (x) =
1

n

n∑
i=1

(xi − x̄)2

I the sample standard deviation σ(x) is the square root of the
variance

σ(x) =
√

V (x)

-20pt

UNIVERSITY OF

GOTHENBURG

example

I low variance: data concentrated near the mean
I in the extreme case: all values are identical

I high variance: data spread out

150 160 170 180 190 200
0

50

100

150

200

250

300

σ = 2.9

150 160 170 180 190 200
0

50

100

150

200

250

300

σ = 9.1

-20pt

UNIVERSITY OF

GOTHENBURG

variance and standard deviation in SciPy

I variance:
var_height = scipy.var(heights)

I standard deviation:

std_m_weight = scipy.std(m_weights)

-20pt

UNIVERSITY OF

GOTHENBURG

new feature in standard Python: the statistics library

I recently, some statistical functions were added to Python's
standard library, for instance

I statistics.mean
I statistics.median
I statistics.stdev

I see
https://docs.python.org/3/library/statistics.html

https://docs.python.org/3/library/statistics.html

-20pt

UNIVERSITY OF

GOTHENBURG

percentiles

I how tall are the shortest 5% of the people in the dataset?
I formally: what is the x such that 5% of the data is less than x?

I this number is called the 5% percentile
I in Python:

p5 = numpy.percentile(heights, 5)

140 150 160 170 180 190 200
0

50

100

150

200

250

5% percentile 95% percentile

-20pt

UNIVERSITY OF

GOTHENBURG

relations between two variables: correlation

I the correlation coe�cient or the Pearson r measures how
close the data is to a linear relationship

I it is a number that ranges between -1 and +1
I example [Wikipedia]:

I it is de�ned

r(x , y) =

∑
n

i=1
(xi − x̄)(yi − ȳ)

σ(x)σ(y)

-20pt

UNIVERSITY OF

GOTHENBURG

correlation example

I for the height�weight data, r = 0.87

150 155 160 165 170 175 180 185 190 195
40

50

60

70

80

90

100

110

120

I with Python:
correlation = scipy.stats.pearsonr(heights, weights)[0]

-20pt

UNIVERSITY OF

GOTHENBURG

overview

overview of the course

analysing numerical data in Python

basics of probability theory

randomness in Python

-20pt

UNIVERSITY OF

GOTHENBURG

what are probabilities?

I relative frequencies?
I if we can repeat an experiment: how often does the event E

occur?
I when we roll a die, we may say that the probability of a �4� is

1/6 because we will get a �4� approximately 1/6 of the time

I degrees of belief?
I what is the probability that Elvis Presley is alive?
I with which probability could Germany have won WW2?

-20pt

UNIVERSITY OF

GOTHENBURG

some formal notation: events

I the theory of probability is built on the
theory of sets

I so we can draw Venn diagrams to make the
notions more intuitive

I Ω is the sample set: the set of all possible
situations

I an event A is a subset of Ω

I the union event A∪B means that either A or B has happened

I the joint event AB (also written A ∩ B) means that A and B

have both happened

I two events A and C that can't happen at the same time (that
is, the intersection is empty) are called disjoint

-20pt

UNIVERSITY OF

GOTHENBURG

the mathematical de�nition: the Kolmogorov axioms

I the probability P(A) is a number such that
I 0 ≤ P(A) ≤ 1 for every event A
I P(Ω) = 1
I P(A ∪ B) = P(A) + P(B) if A and B are

disjoint

I in the illustrations, P(A) intuitively
corresponds to the area covered by A in the
Venn diagram

-20pt

UNIVERSITY OF

GOTHENBURG

example: Dice rolling

I A = �rolling a 4�; P(A) = ?

I B = �rolling 3 or lower�; P(B) = ?

I C = �rolling an even number�; P(C) = ?

I P(A ∪ B) = P(A) + P(B)?

I P(A ∪ C) = P(A) + P(C)?

I P(rolling 1, 2, 3, 4, 5, or 6) = ?

-20pt

UNIVERSITY OF

GOTHENBURG

some consequences

I A′ = �everything but A� = Ω \ A

P(A′) = 1− P(A)

P(∅) = 0

I A = �rolling a 4�; P(A) = ?

I A′ = �not rolling 4�; P(A′) = ?

I P(rolling neither 1, 2, 3, 4, 5, 6) = ?

-20pt

UNIVERSITY OF

GOTHENBURG

joint and conditional probabilities

I the probability of both A and B happening is
called the joint probability, written P(AB) or
P(A,B)

I de�nition: if P(B) 6= 0, then

P(A|B) =
P(AB)

P(B)

is referred to as the conditional probability of

A given B
I intuitively in the Venn diagram: zoom in on B

I �what is the probability of a 4 if we know it's an even number?�

I this is something we've already used in language models,
taggers, etc

-20pt

UNIVERSITY OF

GOTHENBURG

example: vowels in English

I P(vowel) = 0.36

I P(vowel | previous is vowel) = 0.12

I P(vowel | previous is not vowel) = 0.50

-20pt

UNIVERSITY OF

GOTHENBURG

the multiplication rule and the chain rule

I if we rearrange the de�nition of the conditional probability, we
get the multiplication rule

P(AB) = P(A|B) · P(B)

I if we have more than two events, this rule can be generalized
to the chain rule

P(ABC) = P(A|BC) · P(B|C) · P(C)

I this decomposition is used in taggers, language models, etc

-20pt

UNIVERSITY OF

GOTHENBURG

independent events

I de�nition: two events A and B are independent if

P(AB) = P(A) · P(B)

I this can be rewritten in a more intuitive way: �the probability
of A does not depend on anything about B�

P(A|B) = P(A)

-20pt

UNIVERSITY OF

GOTHENBURG

examples

I dice rolling:
I A = �rolling a 4 the �rst time�
I B = �rolling a 4 the second time�

I drawing cards:
I A = �drawing the ace of spades as the �rst card�
I B = �drawing the ace of spades as the second card�

-20pt

UNIVERSITY OF

GOTHENBURG

recap: the Markov assumption in language models

I unigram language model: we assume that the words occur
independently

P(w1,w2,w3) = P(w3|w2,w1) · P(w2|w1) · P(w1)
= P(w3) · P(w2) · P(w1)

I bigram model: word is independent of everything but the
previous word

P(w1,w2,w3) = P(w3|w2,w1) · P(w2|w1) · P(w1)
= P(w3|w2) · P(w2|w1) · P(w1)

-20pt

UNIVERSITY OF

GOTHENBURG

drawing tree diagrams (1)

-20pt

UNIVERSITY OF

GOTHENBURG

drawing tree diagrams (2)

-20pt

UNIVERSITY OF

GOTHENBURG

overview

overview of the course

analysing numerical data in Python

basics of probability theory

randomness in Python

-20pt

UNIVERSITY OF

GOTHENBURG

a brief note on �random� numbers

I pseudorandom numbers: generating �random� numbers in a
computer using a deterministic process

I usually fast
I we use a starting point called the seed
I if we use the same seed, we'll get the same sequence

I good for replicable experiments

I might be a security risk in some situations

I hardware random numbers
I sample noise from hardware devices
I Linux: /dev/random

-20pt

UNIVERSITY OF

GOTHENBURG

basic functions for random numbers: the random library

I reset the random number generator
random.seed(0)

I generate a random �oating-point number between 0 and 1
random_float = random.random()

I generate a random integer between 1 and 6
die_roll = random.randint(1, 6)

I shu�e the items of a list lst
random.shuffle(lst)

I pick a random item from a list lst
selection = random.choice(lst)

-20pt

UNIVERSITY OF

GOTHENBURG

a note on the random number generators

I the two random number generating functions are examples of
random variables with uniform distributions

I this means that all outcomes are equally probable
I if we generate a lot of random numbers, the histogram will be

�at

I random.randint(1, 6) is a discrete uniform random
variable

I it generates 1, 2, 3, 4, 5, or 6 with equal probability 1

6

I random.random() is a continuous uniform random variable
I it generates any �oat between 0 and 1 with equal probability

I we'll come back to the notion of random variables and their
distributions in the next lecture

-20pt

UNIVERSITY OF

GOTHENBURG

simulating random events in Python

I random.random and random.randint can be used to
simulate random events

I example of generating random words with di�erent
probabilities

import random

def random_word():

r = random.random()

if r < 0.4:

return 'the'

if r < 0.7:

return 'and'

if r < 0.9:

return 'in'

return 'is'

random_words = [random_word() for _ in range(20)]

print(random_words)

-20pt

UNIVERSITY OF

GOTHENBURG

next lecture (Thursday)

I a few more notions from basic probability theory

I random variables and their distributions

	overview of the course
	analysing numerical data in Python
	basics of probability theory
	randomness in Python

