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I course matters

I analysing numerical data with Python

I basic notions of probability

I simulating random events in Python
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why statistics in NLP and linguistics?

I in experimental evaluations:
I a HMM tagger T1 is tested on a sample of 1000 words and

gets and accuracy rate of 0.92 (92%). How precise is this
measurement?

I a Brill tagger T2 is tested on the same sample and gets an
accuracy rate of 0.94. Is the Brill tagger signi�cantly better
than the HMM tagger?
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why statistics in NLP and linguistics?

I in investigations of linguistic data:
I what is the probability of object fronting in Dutch?
I do speakers a�ected by Alzheimer's disease exhibit a
signi�cantly smaller vocabulary?
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why statistics in NLP and linguistics?

I in language processing systems:
I what is the probability of English case being translated to

Swedish kapsel?
I . . . of a noun if the previous word was a verb?

I data-driven NLP systems: we specify a general model and tune
speci�c parameters by observing our data
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course overview

I theoretical part:
I probability theory
I statistical inference
I statistical methods in experiments

I applications in NLP:
I classi�ers, taggers, parsers, topic models
I machine translation
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course work

I lectures � all in L308 (except tomorrow)

I lab sessions � in the computer lab G212 (lab 4)

I always on Tuesdays at 10�12 (except March 15) or Thursdays
at 13�15

I teachers:
I Richard: gives most of the lectures and supervises the two

introductory computer exercises
I Prasanth: machine translation lecture and assignment
I Mehdi: supervises and grades the other assignments
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examination

I 2 mandatory computer exercises

I 3 mandatory programming assignments
I text categorization
I evaluation
I PoS tagger implementation

I 2 optional programming assignments for VG
I topic modeling
I machine translation
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deadlines

I computer exercises: a few days

I programming assignments: 2 weeks after lab session

I VG assignments: March 28
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literature

I Manning and Schütze: Foundations of Statistical Natural
Language Processing

I http://nlp.stanford.edu/fsnlp/

http://nlp.stanford.edu/fsnlp/
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literature linked from the web page

I Krenn and Samuelsson: The Linguist's Guide to Statistics �
Don't Panic!

I alternative to M&S for the theoretical part of the course

I lecture notes by Michael Collins
I for the NLP part
I more in-depth than M&S

I Mitchell: Naïve Bayes and Logistic Regression

I a few other research papers



-20pt

UNIVERSITY OF

GOTHENBURG

overview

overview of the course

analysing numerical data in Python

basics of probability theory

randomness in Python



-20pt

UNIVERSITY OF

GOTHENBURG

summary statistics and plotting

I if we have some collection of data, it can be useful to
summarize the data using plots and high-level measures

I a useful skill in general when carrying out experiments

I and we'll use it in the two computer exercises
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some useful Python libraries we'll use in this course

I SciPy: a Python library for statistics and math in general
I http://www.scipy.org/

I NumPy: e�cient mathematical functions
I http://www.numpy.org/

I matplotlib: using Python to draw diagrams
I http://matplotlib.org/

http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
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an example dataset

177 67 m

177 77 m

175 87 m

154 47 f

157 56 f

152 53 f

165 49 f

165 66 f

165 63 m

162 54 f

167 62 m

167 79 f

167 58 f

165 61 f

# read the data

data = []

with open('bodies.txt') as f:

for l in f:

h, w, s = l.split()

data.append( (int(h), int(w), s) )

heights = [ h for h, _, _ in data ]

weights = [ w for _, w, _ in data ]

m_heights = [ h for h, _, s in data if s == 'm']

m_weights = [ w for _, w, s in data if s == 'm']

f_heights = [ h for h, _, s in data if s == 'f']

f_weights = [ w for _, w, s in data if s == 'f']
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plotting the data

I import the plotting library
from matplotlib import pyplot as plt

I plot a height/weight plot, each point as an 'x'
plt.plot(heights, weights, 'x')

I plot height/weight plot by gender
plt.plot(m_heights, m_weights, 'o', f_heights, f_weights, 'x')

I save the plot to a �le
plt.savefig('myplot.pdf')

I alternatively, draw the plot on the screen
plt.show()
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plotting histograms

I a histogram is a diagram that shows how the data points are
distributed

I the x axis shows �bins�, e.g. 165�170 cm, and the y axis shows
the number of data points in that bin

I here's how we draw a histogram with matplotlib:
plt.hist(heights, bins=10)
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some basic data analysis

I maximal and minimal values:

max_f_height = max(f_heights)

print('Tallest female: {0} cm'.format(max_f_height))

I sample mean (average) and median:

mean_m_weight = scipy.mean(m_weights)

print('Mean male weight: {0} kgs'.format(mean_m_weight))

median_f_weight = scipy.median(f_weights)

print('Median female weight: {0} kgs'.format(median_f_weight))
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measures of dispersion: variance and standard deviation

I recall that the mean x̄ of a dataset x is de�ned

x̄ =
1

n

n∑
i=1

xi

I the sample variance V (x) of a dataset x measures how much
x is concentrated to the mean

I it is the mean of the squares of the o�sets from the mean

V (x) =
1

n

n∑
i=1

(xi − x̄)2

I the sample standard deviation σ(x) is the square root of the
variance

σ(x) =
√

V (x)
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example

I low variance: data concentrated near the mean
I in the extreme case: all values are identical

I high variance: data spread out
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variance and standard deviation in SciPy

I variance:
var_height = scipy.var(heights)

I standard deviation:

std_m_weight = scipy.std(m_weights)
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new feature in standard Python: the statistics library

I recently, some statistical functions were added to Python's
standard library, for instance

I statistics.mean
I statistics.median
I statistics.stdev

I see
https://docs.python.org/3/library/statistics.html

https://docs.python.org/3/library/statistics.html
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percentiles

I how tall are the shortest 5% of the people in the dataset?
I formally: what is the x such that 5% of the data is less than x?

I this number is called the 5% percentile
I in Python:

p5 = numpy.percentile(heights, 5)
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relations between two variables: correlation

I the correlation coe�cient or the Pearson r measures how
close the data is to a linear relationship

I it is a number that ranges between -1 and +1
I example [Wikipedia]:

I it is de�ned

r(x , y) =

∑
n

i=1
(xi − x̄)(yi − ȳ)

σ(x)σ(y)
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correlation example

I for the height�weight data, r = 0.87
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I with Python:
correlation = scipy.stats.pearsonr(heights, weights)[0]
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what are probabilities?

I relative frequencies?
I if we can repeat an experiment: how often does the event E

occur?
I when we roll a die, we may say that the probability of a �4� is

1/6 because we will get a �4� approximately 1/6 of the time

I degrees of belief?
I what is the probability that Elvis Presley is alive?
I with which probability could Germany have won WW2?
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some formal notation: events

I the theory of probability is built on the
theory of sets

I so we can draw Venn diagrams to make the
notions more intuitive

I Ω is the sample set: the set of all possible
situations

I an event A is a subset of Ω

I the union event A∪B means that either A or B has happened

I the joint event AB (also written A ∩ B) means that A and B

have both happened

I two events A and C that can't happen at the same time (that
is, the intersection is empty) are called disjoint
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the mathematical de�nition: the Kolmogorov axioms

I the probability P(A) is a number such that
I 0 ≤ P(A) ≤ 1 for every event A
I P(Ω) = 1
I P(A ∪ B) = P(A) + P(B) if A and B are

disjoint

I in the illustrations, P(A) intuitively
corresponds to the area covered by A in the
Venn diagram
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example: Dice rolling

I A = �rolling a 4�; P(A) = ?

I B = �rolling 3 or lower�; P(B) = ?

I C = �rolling an even number�; P(C ) = ?

I P(A ∪ B) = P(A) + P(B)?

I P(A ∪ C ) = P(A) + P(C )?

I P(rolling 1, 2, 3, 4, 5, or 6) = ?
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some consequences

I A′ = �everything but A� = Ω \ A

P(A′) = 1− P(A)

P(∅) = 0

I A = �rolling a 4�; P(A) = ?

I A′ = �not rolling 4�; P(A′) = ?

I P(rolling neither 1, 2, 3, 4, 5, 6) = ?
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joint and conditional probabilities

I the probability of both A and B happening is
called the joint probability, written P(AB) or
P(A,B)

I de�nition: if P(B) 6= 0, then

P(A|B) =
P(AB)

P(B)

is referred to as the conditional probability of

A given B
I intuitively in the Venn diagram: zoom in on B

I �what is the probability of a 4 if we know it's an even number?�

I this is something we've already used in language models,
taggers, etc
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example: vowels in English

I P(vowel) = 0.36

I P(vowel | previous is vowel) = 0.12

I P(vowel | previous is not vowel) = 0.50
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the multiplication rule and the chain rule

I if we rearrange the de�nition of the conditional probability, we
get the multiplication rule

P(AB) = P(A|B) · P(B)

I if we have more than two events, this rule can be generalized
to the chain rule

P(ABC ) = P(A|BC ) · P(B|C ) · P(C )

I this decomposition is used in taggers, language models, etc
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independent events

I de�nition: two events A and B are independent if

P(AB) = P(A) · P(B)

I this can be rewritten in a more intuitive way: �the probability
of A does not depend on anything about B�

P(A|B) = P(A)
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examples

I dice rolling:
I A = �rolling a 4 the �rst time�
I B = �rolling a 4 the second time�

I drawing cards:
I A = �drawing the ace of spades as the �rst card�
I B = �drawing the ace of spades as the second card�
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recap: the Markov assumption in language models

I unigram language model: we assume that the words occur
independently

P(w1,w2,w3) = P(w3|w2,w1) · P(w2|w1) · P(w1)
= P(w3) · P(w2) · P(w1)

I bigram model: word is independent of everything but the
previous word

P(w1,w2,w3) = P(w3|w2,w1) · P(w2|w1) · P(w1)
= P(w3|w2) · P(w2|w1) · P(w1)
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drawing tree diagrams (1)
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drawing tree diagrams (2)
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a brief note on �random� numbers

I pseudorandom numbers: generating �random� numbers in a
computer using a deterministic process

I usually fast
I we use a starting point called the seed
I if we use the same seed, we'll get the same sequence

I good for replicable experiments

I might be a security risk in some situations

I hardware random numbers
I sample noise from hardware devices
I Linux: /dev/random
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basic functions for random numbers: the random library

I reset the random number generator
random.seed(0)

I generate a random �oating-point number between 0 and 1
random_float = random.random()

I generate a random integer between 1 and 6
die_roll = random.randint(1, 6)

I shu�e the items of a list lst
random.shuffle(lst)

I pick a random item from a list lst
selection = random.choice(lst)
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a note on the random number generators

I the two random number generating functions are examples of
random variables with uniform distributions

I this means that all outcomes are equally probable
I if we generate a lot of random numbers, the histogram will be

�at

I random.randint(1, 6) is a discrete uniform random
variable

I it generates 1, 2, 3, 4, 5, or 6 with equal probability 1

6

I random.random() is a continuous uniform random variable
I it generates any �oat between 0 and 1 with equal probability

I we'll come back to the notion of random variables and their
distributions in the next lecture
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simulating random events in Python

I random.random and random.randint can be used to
simulate random events

I example of generating random words with di�erent
probabilities

import random

def random_word():

r = random.random()

if r < 0.4:

return 'the'

if r < 0.7:

return 'and'

if r < 0.9:

return 'in'

return 'is'

random_words = [ random_word() for _ in range(20) ]

print(random_words)
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next lecture (Thursday)

I a few more notions from basic probability theory

I random variables and their distributions
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