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today

I recap of a few probability notions, and two new ones

I random variables and their distributions
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the mathematical de�nition: the Kolmogorov axioms

I the probability P(A) is a number such that
I 0 ≤ P(A) ≤ 1 for every event A
I P(Ω) = 1
I P(A ∪ B) = P(A) + P(B) if A and B are

disjoint

I in the illustrations, P(A) intuitively

corresponds to the area covered by A in the

Venn diagram
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joint and conditional probabilities

I the probability of both A and B happening is

called the joint probability, written P(AB) or

P(A,B)

I de�nition: if P(B) 6= 0, then

P(A|B) =
P(AB)

P(B)

is referred to as the conditional probability of

A given B

I intuitively in the Venn diagram: zoom in on B
I �what is the probability of a 4 if we know it's an even number?�
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independent events

I de�nition: two events A and B are independent if

P(AB) = P(A) · P(B)

I this can be rewritten in a more intuitive way: �the probability

of A does not depend on anything about B�

P(A|B) = P(A)



-20pt

UNIVERSITY OF

GOTHENBURG

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions



-20pt

UNIVERSITY OF

GOTHENBURG

the law of total probability

I from the de�nition of conditional probability,

we get

P(AB) = P(A|B)P(B)

I we can do the same thing with B ′

P(A B ′) = P(A|B ′)P(B ′)

I then

P(A) = P(AB) + P(A B ′)

= P(A|B)P(B) + P(A|B ′)P(B ′)

I this is a special case of the law of total probability
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another example

P(going bald|male) = 0.4

P(going bald|female) = 0.01

P(male) = 0.49

P(female) = 0.51

P(going bald) =

= P(going bald|male) · P(male) + P(going bald|female) · P(female)

= 0.01 · 0.49 + 0.4 · 0.51 = 0.2089
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Bayes' theorem

I in the NLP course, we already saw Bayes' theorem:

P(A|B) =
P(B|A) · P(A)

P(B)

I this is often used to split a model into simpler parts
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typical use of the Bayes theorem in NLP

I Bayes' theorem is involved in many NLP models

I the typical use is something like this (in this case, HMM

tagging):

P(T |W ) =
P(W |T ) · P(T )

P(W )

I this trick is used in Naive Bayes classi�ers, tagging, speech

recognition, machine translation, and other applications

I often, the next step is the observation that we can simplify

this if we're only interested in the maximum:

argmax
T

P(T |W ) = argmax
T

P(W |T ) · P(T )

P(W )

= argmax
T

P(W |T ) · P(T )
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how to get Bayes' theorem

I recall the de�nition of conditional probability

P(A|B) =
P(AB)

P(B)

I we rearrange:

P(AB) = P(A|B) · P(B)

I and by switching symbols:

P(AB) = P(B|A) · P(A)

I by combining, we get Bayes' theorem

P(A|B) =
P(B|A) · P(A)

P(B)
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exercise: drug testing

I a drug test has a true positive rate of 99% and a true negative

rate of 99%

P(positive|user) = 0.99 P(negative|not user) = 0.99

I 0.5% of all people are users of the drug

P(user) = 0.005

I if a person tests positive, what is the probability that this is a

user of a drug?

P(user|positive) =?
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exercise: drug testing (continued)

I idea: we use the given information and apply Bayes' theorem

I the missing piece for applying Bayes is P(positive)

P(positive) = P(positive|user) · P(user)

+P(positive|not user) · P(not user)

= 0.99 · 0.005 + 0.01 · 0.995 = 0.0149

I so �nally:

P(user|positive) =
P(user|positive)P(user)

P(positive)

=
0.99 · 0.005

0.0149
= 0.332
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recap: random number generators in Python

I the two random number generating functions are examples of
random variables with uniform distributions

I this means that all outcomes are equally probable
I if we generate a lot of random numbers, the histogram will be

�at

I random.randint(1, 6) is a discrete uniform random
variable

I it generates 1, 2, 3, 4, 5, or 6 with equal probability 1

6

I random.random() is a continuous uniform random variable
I it generates any �oat between 0 and 1 with equal probability

I now: discrete random variables
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random variables

I a random variable (r.v.) is a variable that selects its value
randomly, like random.randint and random.random

I also: stochastic variable (στοχαστικός)

I random.randint and random.random are uniform, but in

general the di�erent outcomes can have di�erent probabilities

I examples:
I the amount I win when buying a lottery ticket
I the number of heads when tossing coins n times
I the gender of a newborn baby
I the number of words in an English sentence randomly selected

from a corpus
I the initial word in a random sentence
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example: lottery

I my r.v. X is the amount of money I win when I buy a lottery

ticket

I the possible outcomes:
I if I win, I get 1,000,000 SEK
I otherwise, I get nothing

I the probabilities of the outcomes:
I P(0 SEK) = 0.99999
I P(1, 000, 000 SEK) = 0.00001
I P(something else) = 0
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example: tossing a coin twice

I my r.v. X is the number of heads I get when tossing a coin

twice

I the possible ways the coins can land:

Head-Head, Head-Tail, Tail-Head, Tail-Tail

I assuming the coin is even, each of these possibilities has a

probability of 1

4

I so here are the probabilities for the di�erent values of X :

P(X = 0) = 1

4

P(X = 1) = 2

4

P(X = 2) = 1

4
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describing a random variable

I when discussing a random variable, we need to describe which

values it takes and with which probabilities: the distribution

I for instance:
I when rolling a die, all the outcomes have the same probability



-20pt

UNIVERSITY OF

GOTHENBURG

the probability mass function

I to describe the distribution of the r.v. X , we use a function

called the probability mass function (pmf) of X :

pX (x) = P(X takes the value x)

I for instance, the number of heads when tossing a coin twice:

pX (0) = P(X = 0) = 1

4

pX (1) = P(X = 1) = 2

4

pX (2) = P(X = 2) = 1

4

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0
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the pmf for a die roll

I the uniform distribution has a constant pmf:

pX (1) = 1

6

. . .

pX (6) = 1

6

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
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how many times do I have to take the exam?

I the probability of passing the exam is 0.6

I if I fail, I don't prepare for the next one

I X = the number of times I have to take the exam to pass

pX (1) = 0.6

pX (2) = 0.4 · 0.6

pX (3) = 0.4 · 0.4 · 0.6

. . .

pX (k) = 0.4(k−1) · 0.6
1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
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probabilities of intervals

I what is the probability that we'll go to the exam at most 3

times?

pX (1) + pX (2) + pX (3) = 0.6 + 0.4 · 0.6 + 0.42 · 0.6

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
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probabilities of intervals (2)

I what is the probability that we roll a number between 2 and 5?

pX (2) + pX (3) + pX (4) + pX (5) = 4 · 1
6

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
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recap: the mean of a sample

I recall that the sample mean x̄ of a dataset x is de�ned

x̄ =
1

n

n∑
i=1

xi

I mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

1

10
(2 + 6 + 1 + 1 + 5 + 4 + 6 + 4 + 1 + 3)

= 1

10
(3 · 1 + 1 · 2 + 1 · 3 + 2 · 4 + 1 · 5 + 2 · 6)

= 3

10
· 1 + 1

10
· 2 + 1

10
· 3 + 2

10
· 4 + 1

10
· 5 + 2

10
· 6 = 5.5

I what happens if we roll the die many times?
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the mean value of a random variable

I the notion of mean has a natural correspondence for random

variables:

E(X ) =
∑
i

pX (i) · i

I this is also called the expected value of X

I intuitively, this corresponds to what happens if we take a very
large sample from the random variable

I and there is also a theorem called the law of large numbers
that formalizes this intuition
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rolling the die: mean value

I if X represents a die roll, then the mean value of X is

E(X ) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 = 3.5

I in general, the mean of a uniform random variable X is

E(X ) =
max value + min value

2
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visual interpretation of the mean

I if we think of the pmf as weights placed on a board, E(X ) can

be thought of as the center of mass

I so for all distributions with a symmetric pmf, E(X ) is in the

middle between the lowest and the highest value
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two coins: mean value

I the pmf for the number of heads when tossing two coins:

pX (0) = P(X = 0) = 1

4

pX (1) = P(X = 1) = 2

4

pX (2) = P(X = 2) = 1

4

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

I what's the mean?

E(X ) =
∑
i

pX (i) · i =
1

4
· 0 +

2

4
· 1 +

1

4
· 2 = 1

I this result makes sense � why?
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a few tricks with the mean

I we roll a die and multiply the result by 10; what's the mean of

this r.v.?

I in general:

E(a · X ) = a · E(X )

I we roll two dice and sum the result; what's the mean of this

r.v.?

I in general:

E(X + Y ) = E(X ) + E(Y )
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variance and standard deviation

I previous lecture: the sample variance V (x) of a dataset x
measures how much x is concentrated to the mean

I it is the mean of the squares of the o�sets from the mean

V (x) =
1

n

n∑
i=1

(xi − x̄)2

I just like for the mean value, there is a corresponding notion of

variance for random variables: if E(X ) = m, then

V (X ) = E[(X −m)2]

I and naturally, there is also a standard deviation

D(X ) =
√
V (X )
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two distributions

I low variance: pmf concentrated near the mean
I in the extreme case: the r.v. is constant

I high variance: the pmf is more spread out

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

D(X ) = 1.1

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

D(X ) = 1.7
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the Bernoulli and binomial distributions

I we already saw the uniform distribution (die roll)

I we will have a look at two common and useful distributions:
I Bernoulli: tossing an uneven coin
I binomial: tossing a coin multiple times
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the Bernoulli distribution

I we toss an uneven coin that gives heads (X = 1) with the

probability p and tails (X = 0) with probability 1− p:

pX (0) = 1− p

pX (1) = p

0 1
0.0

0.2

0.4

0.6

0.8

1.0

I X is then said to have a Bernoulli distribution with a

parameter p

I this may seem like an uninteresting distribution, but it can be
used as a building block for more interesting models

I a single experiment that can �succeed� or not
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the mean of the Bernoulli

I the pmf of the Bernoulli:

pX (0) = 1− p

pX (1) = p

0 1
0.0

0.2

0.4

0.6

0.8

1.0

I what's the mean?

E(X ) =
∑
i

pX (i) · i = (1− p) · 0 + p · 1 = p
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multiple coin tosses

I we toss a coin 4 times; the probability of heads is p

I the number of heads is a r.v. X

I what is the probability of 2 heads?

I let's do it in two steps:
I what's the probability of the sequence Heads-Tails-Tails-Head?

P(HTTH) = p · (1− p) · (1− p) · p = p2 · (1− p)2

I in how many ways can we get 2 heads?

HHTT, HTHT, HTTH, THHT, THTH, TTHH

I so we get

P(2 heads) = 6 · p2 · (1− p)2
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I what is the probability of 2 heads?
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P(HTTH) = p · (1− p) · (1− p) · p = p2 · (1− p)2

I in how many ways can we get 2 heads?

HHTT, HTHT, HTTH, THHT, THTH, TTHH

I so we get

P(2 heads) = 6 · p2 · (1− p)2



-20pt

UNIVERSITY OF

GOTHENBURG

multiple coin tosses

I we toss a coin 4 times; the probability of heads is p

I the number of heads is a r.v. X

I what is the probability of 2 heads?

I let's do it in two steps:
I what's the probability of the sequence Heads-Tails-Tails-Head?

P(HTTH) = p · (1− p) · (1− p) · p = p2 · (1− p)2

I in how many ways can we get 2 heads?

HHTT, HTHT, HTTH, THHT, THTH, TTHH

I so we get

P(2 heads) = 6 · p2 · (1− p)2



-20pt

UNIVERSITY OF

GOTHENBURG

multiple coin tosses

I we toss a coin 4 times; the probability of heads is p

I the number of heads is a r.v. X

I what is the probability of 2 heads?

I let's do it in two steps:
I what's the probability of the sequence Heads-Tails-Tails-Head?

P(HTTH) = p · (1− p) · (1− p) · p = p2 · (1− p)2

I in how many ways can we get 2 heads?

HHTT, HTHT, HTTH, THHT, THTH, TTHH

I so we get

P(2 heads) = 6 · p2 · (1− p)2



-20pt

UNIVERSITY OF

GOTHENBURG

picking k items out of n

I the number of ways to pick k items from a set of n items is

called the binomial coe�cient(
n

k

)
=

n!

k! · (n − k)!

I n! = 1 · 2 · · · n is the factorial function

I example: 4 coin tosses, how many combinations with k heads?
0 TTTT 1

1 HTTT, THTT, TTHT, TTTH 4

2 HHTT, HTHT, HTTH, THHT, THTH, TTHH 6

3 HHHT, HHTH, HTHH, THHH 4

4 HHHH 1
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the binomial distribution

I a random variable is said to have a binomial distribution

with parameters n and p if its pmf is

(
n

k

)
· pk · (1− p)n−k

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

I the classical use case for the binomial distribution: repeated
experiments

I n corresponds to the number of experiments, p to the
probability of �success�

I this distribution will be useful when we discuss how to estimate
of probabilities

I it is the sum of n independent Bernoulli
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di�erent values of p

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

p = 0.15

0 1 2 3 4 5 6 7 8 9 10
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0.6

0.8

1.0

p = 0.5

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2
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0.6

0.8

1.0

p = 0.75
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the mean of the binomial

I we toss an even coin (p = 0.5) 10,000 times

I roughly, how many heads do you think we get?

I in general, we have

E(X ) = n · p

I it makes sense intuitively, but can we show it theoretically?



-20pt

UNIVERSITY OF

GOTHENBURG

the mean of the binomial

I we toss an even coin (p = 0.5) 10,000 times

I roughly, how many heads do you think we get?

I in general, we have

E(X ) = n · p

I it makes sense intuitively, but can we show it theoretically?



-20pt

UNIVERSITY OF

GOTHENBURG

example

I the probability that a randomly selected letter in an English

word is e is 0.2

I what is the probability that an 10-letter word contains exactly
three occurrences of e?

I the number of ways to put 3 es into a 10-letter word, times the
probability of each such word(

10

3

)
· 0.23 · (1− 0.2)7 = 120 · 0.23 · 0.87 = 0.201

I what is the mean value of the number of occurrences of e?

10 · 0.2 = 2
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next week

I on Tuesday, we'll be in the computer lab

I I'll give some more information on distributions

I �rst computer exercise: study distributions empirically
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