Statistical methods in NLP Probabilities and random variables

Richard Johansson

January 22, 2016

today

- recap of a few probability notions, and two new ones
- random variables and their distributions

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions

the mathematical definition: the Kolmogorov axioms

- the probability P(A) is a number such that
 - ▶ $0 \le P(A) \le 1$ for every event A
 - $P(\Omega) = 1$
 - ► $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint
- ▶ in the illustrations, P(A) intuitively corresponds to the area covered by A in the Venn diagram

joint and conditional probabilities

- ▶ the probability of both A and B happening is called the **joint probability**, written P(AB) or P(A,B)
- definition: if $P(B) \neq 0$, then

$$P(B) \neq 0$$
, then $P(A|B) = \frac{P(AB)}{P(B)}$
s the conditional probability of

is referred to as the conditional probability of A given B

- intuitively in the Venn diagram: zoom in on B
 - "what is the probability of a 4 if we know it's an even number?"

independent events

definition: two events A and B are independent if

$$P(AB) = P(A) \cdot P(B)$$

▶ this can be rewritten in a more intuitive way: "the probability of A does not depend on anything about B"

$$P(A|B) = P(A)$$

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions

the law of total probability

 from the definition of conditional probability, we get

$$P(AB) = P(A|B)P(B)$$

 \blacktriangleright we can do the same thing with B'

$$P(A B') = P(A|B')P(B')$$

then

$$P(A) = P(AB) + P(A B')$$
$$= P(A|B)P(B) + P(A|B')P(B')$$

this is a special case of the law of total probability

another example

$$P(\text{going bald}|\text{male}) = 0.4$$

$$P(\text{going bald}|\text{female}) = 0.01$$

$$P(male) = 0.49$$

$$P(female) = 0.51$$

$$P(going bald) =$$

another example

$$P(\text{going bald}|\text{male}) = 0.4$$

$$P(\text{going bald}|\text{female}) = 0.01$$

$$P(male) = 0.49$$

$$P(female) = 0.51$$

$$P(going bald) =$$

$$= 0.01 \cdot 0.49 + 0.4 \cdot 0.51 = 0.2089$$

, bald

Bayes' theorem

▶ in the NLP course, we already saw Bayes' theorem:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

this is often used to split a model into simpler parts

typical use of the Bayes theorem in NLP

- Bayes' theorem is involved in many NLP models
- the typical use is something like this (in this case, HMM tagging):

$$P(T|W) = \frac{P(W|T) \cdot P(T)}{P(W)}$$

- this trick is used in Naive Bayes classifiers, tagging, speech recognition, machine translation, and other applications
- often, the next step is the observation that we can simplify this if we're only interested in the maximum:

$$\arg \max_{T} P(T|W) = \arg \max_{T} \frac{P(W|T) \cdot P(T)}{P(W)}$$
$$= \arg \max_{T} P(W|T) \cdot P(T)$$

how to get Bayes' theorem

recall the definition of conditional probability

$$P(A|B) = \frac{P(AB)}{P(B)}$$

we rearrange:

$$P(AB) = P(A|B) \cdot P(B)$$

and by switching symbols:

$$P(AB) = P(B|A) \cdot P(A)$$

by combining, we get Bayes' theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

exercise: drug testing

➤ a drug test has a true positive rate of 99% and a true negative rate of 99%

$$P(positive|user) = 0.99$$
 $P(negative|not user) = 0.99$

▶ 0.5% of all people are users of the drug

$$P(user) = 0.005$$

• if a person tests positive, what is the probability that this is a user of a drug?

$$P(user|positive) = ?$$

▶ idea: we use the given information and apply Bayes' theorem

- ▶ idea: we use the given information and apply Bayes' theorem
- the missing piece for applying Bayes is P(positive)

- ▶ idea: we use the given information and apply Bayes' theorem
- \triangleright the missing piece for applying Bayes is P(positive)

$$P(\text{positive}) = P(\text{positive}|\text{user}) \cdot P(\text{user})$$

 $+P(\text{positive}|\text{not user}) \cdot P(\text{not user})$
 $= 0.99 \cdot 0.005 + 0.01 \cdot 0.995 = 0.0149$

- ▶ idea: we use the given information and apply Bayes' theorem
- \triangleright the missing piece for applying Bayes is P(positive)

$$P(\text{positive}) = P(\text{positive}|\text{user}) \cdot P(\text{user})$$

 $+P(\text{positive}|\text{not user}) \cdot P(\text{not user})$
 $= 0.99 \cdot 0.005 + 0.01 \cdot 0.995 = 0.0149$

so finally:

$$P(user|positive) = \frac{P(user|positive)P(user)}{P(positive)}$$
$$= \frac{0.99 \cdot 0.005}{0.0149} = 0.332$$

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions

recap: random number generators in Python

- the two random number generating functions are examples of random variables with uniform distributions
 - this means that all outcomes are equally probable
 - if we generate a lot of random numbers, the histogram will be flat
- random.randint(1, 6) is a discrete uniform random variable
 - ▶ it generates 1, 2, 3, 4, 5, or 6 with equal probability $\frac{1}{6}$
- random.random() is a continuous uniform random variable
 - it generates any float between 0 and 1 with equal probability
- now: discrete random variables

random variables

- a random variable (r.v.) is a variable that selects its value randomly, like random.randint and random.random
 - ► also: stochastic variable (στοχαστικός)
- random.randint and random.random are uniform, but in general the different outcomes can have different probabilities
- examples:
 - the amount I win when buying a lottery ticket
 - the number of heads when tossing coins n times
 - the gender of a newborn baby
 - the number of words in an English sentence randomly selected from a corpus
 - ▶ the initial word in a random sentence

example: lottery

- my r.v. X is the amount of money I win when I buy a lottery ticket
- the possible outcomes:
 - ▶ if I win, I get 1,000,000 SEK
 - otherwise, I get nothing
- ▶ the probabilities of the outcomes:
 - P(0 SEK) = 0.99999
 - P(1,000,000 SEK) = 0.00001
 - ▶ P(something else) = 0

example: tossing a coin twice

- ▶ my r.v. X is the number of heads I get when tossing a coin twice
- the possible ways the coins can land:

Head-Head, Head-Tail, Tail-Head, Tail-Tail

- ▶ assuming the coin is even, each of these possibilities has a probability of $\frac{1}{4}$
- ▶ so here are the probabilities for the different values of X:

$$P(X=0)=\tfrac{1}{4}$$

$$P(X=1)=\tfrac{2}{4}$$

$$P(X=2)=\tfrac{1}{4}$$

describing a random variable

- when discussing a random variable, we need to describe which values it takes and with which probabilities: the distribution
- for instance:
 - when rolling a die, all the outcomes have the same probability

the probability mass function

▶ to describe the distribution of the r.v. X, we use a function called the **probability mass function** (pmf) of X:

$$p_X(x) = P(X \text{ takes the value } x)$$

for instance, the number of heads when tossing a coin twice:

$$p_X(0) = P(X = 0) = \frac{1}{4}$$

 $p_X(1) = P(X = 1) = \frac{2}{4}$
 $p_X(2) = P(X = 2) = \frac{1}{4}$

the pmf for a die roll

the uniform distribution has a constant pmf:

$$p_X(1)=\frac{1}{6}$$

$$p_X(6)=\tfrac{1}{6}$$

how many times do I have to take the exam?

- ▶ the probability of passing the exam is 0.6
- ▶ if I fail, I don't prepare for the next one
- ightharpoonup X = the number of times I have to take the exam to pass

how many times do I have to take the exam?

- the probability of passing the exam is 0.6
- ▶ if I fail, I don't prepare for the next one
- ightharpoonup X = the number of times I have to take the exam to pass

$$p_X(1) = 0.6$$

 $p_X(2) = 0.4 \cdot 0.6$
 $p_X(3) = 0.4 \cdot 0.4 \cdot 0.6$
...

$$p_X(k) = 0.4^{(k-1)} \cdot 0.6$$

probabilities of intervals

what is the probability that we'll go to the exam at most 3 times?

probabilities of intervals

what is the probability that we'll go to the exam at most 3 times?

$$p_X(1) + p_X(2) + p_X(3) = 0.6 + 0.4 \cdot 0.6 + 0.4^2 \cdot 0.6$$

probabilities of intervals (2)

▶ what is the probability that we roll a number between 2 and 5?

probabilities of intervals (2)

what is the probability that we roll a number between 2 and 5?

$$p_X(2) + p_X(3) + p_X(4) + p_X(5) = 4 \cdot \frac{1}{6}$$

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions

recap: the mean of a sample

ightharpoonup recall that the sample mean \bar{x} of a dataset x is defined

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

recap: the mean of a sample

ightharpoonup recall that the sample mean \bar{x} of a dataset x is defined

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

$$\frac{1}{10}(2+6+1+1+5+4+6+4+1+3)$$

recap: the mean of a sample

ightharpoonup recall that the sample mean \bar{x} of a dataset x is defined

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

$$\frac{1}{10}(2+6+1+1+5+4+6+4+1+3)$$

$$=\frac{1}{10}(3\cdot 1+1\cdot 2+1\cdot 3+2\cdot 4+1\cdot 5+2\cdot 6)$$

recap: the mean of a sample

recall that the sample mean \bar{x} of a dataset x is defined

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

$$\frac{1}{10}(2+6+1+1+5+4+6+4+1+3)$$

$$= \frac{1}{10}(3\cdot 1+1\cdot 2+1\cdot 3+2\cdot 4+1\cdot 5+2\cdot 6)$$

$$= \frac{3}{10}\cdot 1+\frac{1}{10}\cdot 2+\frac{1}{10}\cdot 3+\frac{2}{10}\cdot 4+\frac{1}{10}\cdot 5+\frac{2}{10}\cdot 6=5.5$$

recap: the mean of a sample

recall that the sample mean \bar{x} of a dataset x is defined

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ mean of [2, 6, 1, 1, 5, 4, 6, 4, 1, 3]:

$$\frac{1}{10}(2+6+1+1+5+4+6+4+1+3)$$

$$= \frac{1}{10}(3\cdot 1+1\cdot 2+1\cdot 3+2\cdot 4+1\cdot 5+2\cdot 6)$$

$$= \frac{3}{10}\cdot 1+\frac{1}{10}\cdot 2+\frac{1}{10}\cdot 3+\frac{2}{10}\cdot 4+\frac{1}{10}\cdot 5+\frac{2}{10}\cdot 6=5.5$$

what happens if we roll the die many times?

the mean value of a random variable

the notion of mean has a natural correspondence for random variables:

$$E(X) = \sum_{i} p_X(i) \cdot i$$

- this is also called the expected value of X
- ▶ intuitively, this corresponds to what happens if we take a very large sample from the random variable
 - and there is also a theorem called the law of large numbers that formalizes this intuition

rolling the die: mean value

▶ if X represents a die roll, then the mean value of X is

$$\mathsf{E}(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = 3.5$$

▶ in general, the mean of a uniform random variable X is

$$\mathsf{E}(X) = \frac{\mathsf{max}\;\mathsf{value} + \mathsf{min}\;\mathsf{value}}{2}$$

visual interpretation of the mean

if we think of the pmf as weights placed on a board, E(X) can be thought of as the center of mass

ightharpoonup so for all distributions with a symmetric pmf, E(X) is in the middle between the lowest and the highest value

two coins: mean value

the pmf for the number of heads when tossing two coins:

$$p_X(0) = P(X = 0) = \frac{1}{4}$$

 $p_X(1) = P(X = 1) = \frac{2}{4}$
 $p_X(2) = P(X = 2) = \frac{1}{4}$

what's the mean?

$$E(X) = \sum_{i} p_X(i) \cdot i = \frac{1}{4} \cdot 0 + \frac{2}{4} \cdot 1 + \frac{1}{4} \cdot 2 = 1$$

this result makes sense – why?

we roll a die and multiply the result by 10; what's the mean of this r.v.?

- we roll a die and multiply the result by 10; what's the mean of this r.v.?
- ▶ in general:

$$\mathsf{E}(a\cdot X)=a\cdot \mathsf{E}(X)$$

- we roll a die and multiply the result by 10; what's the mean of this r.v.?
- ▶ in general:

$$\mathsf{E}(a\cdot X)=a\cdot \mathsf{E}(X)$$

we roll two dice and sum the result; what's the mean of this r.v.?

- we roll a die and multiply the result by 10; what's the mean of this r.v.?
- ▶ in general:

$$\mathsf{E}(a\cdot X)=a\cdot \mathsf{E}(X)$$

- we roll two dice and sum the result; what's the mean of this r.v.?
- ▶ in general:

$$\mathsf{E}(X+Y)=\mathsf{E}(X)+\mathsf{E}(Y)$$

variance and standard deviation

- ▶ previous lecture: the sample variance V(x) of a dataset x measures how much x is concentrated to the mean
 - ▶ it is the mean of the squares of the offsets from the mean

$$V(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

variance and standard deviation

- ▶ previous lecture: the sample variance V(x) of a dataset x measures how much x is concentrated to the mean
 - it is the mean of the squares of the offsets from the mean

$$V(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

▶ just like for the mean value, there is a corresponding notion of variance for random variables: if E(X) = m, then

$$V(X) = E[(X - m)^2]$$

and naturally, there is also a standard deviation

$$D(X) = \sqrt{V(X)}$$

two distributions

- ▶ low variance: pmf concentrated near the mean
 - ▶ in the extreme case: the r.v. is constant
- ▶ high variance: the pmf is more spread out

overview

recap: basic probability rules

two more basic probability rules

random variables and their distributions

mean and variance for random variables

the Bernoulli and binomial distributions

the Bernoulli and binomial distributions

- we already saw the uniform distribution (die roll)
- we will have a look at two common and useful distributions:
 - ▶ Bernoulli: tossing an uneven coin
 - binomial: tossing a coin multiple times

the Bernoulli distribution

• we toss an uneven coin that gives heads (X = 1) with the probability p and tails (X = 0) with probability 1 - p:

$$p_X(0) = 1 - p$$
$$p_X(1) = p$$

$$\rho_X(1)=p$$

- X is then said to have a Bernoulli distribution with a parameter p
- this may seem like an uninteresting distribution, but it can be used as a building block for more interesting models
 - a single experiment that can "succeed" or not

the mean of the Bernoulli

▶ the pmf of the Bernoulli:

$$\rho_X(0) = 1 - \rho$$
 $\rho_X(1) = \rho$

▶ what's the mean?

the mean of the Bernoulli

▶ the pmf of the Bernoulli:

$$p_X(0) = 1 - p$$
$$p_X(1) = p$$

▶ what's the mean?

$$E(X) = \sum_{i} p_X(i) \cdot i = (1-p) \cdot 0 + p \cdot 1 = p$$

- ▶ we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?

- ▶ we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?
- let's do it in two steps:
 - what's the probability of the sequence Heads-Tails-Tails-Head?

- ▶ we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?
- let's do it in two steps:
 - what's the probability of the sequence Heads-Tails-Tails-Head?

$$P(\mathsf{HTTH}) = p \cdot (1-p) \cdot (1-p) \cdot p = p^2 \cdot (1-p)^2$$

- we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?
- let's do it in two steps:
 - what's the probability of the sequence Heads-Tails-Tails-Head?

$$P(\mathsf{HTTH}) = p \cdot (1-p) \cdot (1-p) \cdot p = p^2 \cdot (1-p)^2$$

▶ in how many ways can we get 2 heads?

- ▶ we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?
- let's do it in two steps:
 - what's the probability of the sequence Heads-Tails-Tails-Head?

$$P(\mathsf{HTTH}) = p \cdot (1-p) \cdot (1-p) \cdot p = p^2 \cdot (1-p)^2$$

▶ in how many ways can we get 2 heads?

HHTT, HTHT, HTTH, THHT, THTH, TTHH

- we toss a coin 4 times; the probability of heads is p
- the number of heads is a r.v. X
- what is the probability of 2 heads?
- let's do it in two steps:
 - what's the probability of the sequence Heads-Tails-Tails-Head?

$$P(\mathsf{HTTH}) = p \cdot (1-p) \cdot (1-p) \cdot p = p^2 \cdot (1-p)^2$$

- ▶ in how many ways can we get 2 heads?
 HHTT, HTHT, HTTH, THHT, THTH, TTHH
- ▶ so we get

$$P(2 \text{ heads}) = 6 \cdot p^2 \cdot (1-p)^2$$

picking k items out of n

the number of ways to pick k items from a set of n items is called the binomial coefficient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

- $ightharpoonup n! = 1 \cdot 2 \cdot \cdot \cdot n$ is the factorial function
- \triangleright example: 4 coin tosses, how many combinations with k heads?

U		1
1	НТТТ, ТНТТ, ТТНТ, ТТТН	4
2	HHTT, HTHT, HTTH, THHT, THTH, TTHH	6

- 3 HHHT, HHTH, HTHH, THHH 4
- 4 HHHH

the binomial distribution

▶ a random variable is said to have a binomial distribution with parameters n and p if its pmf is

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

- the classical use case for the binomial distribution: repeated experiments
 - ▶ n corresponds to the number of experiments, p to the probability of "success"
 - this distribution will be useful when we discuss how to estimate of probabilities
- \triangleright it is the sum of n independent Bernoulli

different values of p

the mean of the binomial

- we toss an even coin (p = 0.5) 10,000 times
- roughly, how many heads do you think we get?

the mean of the binomial

- we toss an even coin (p = 0.5) 10,000 times
- roughly, how many heads do you think we get?
- ▶ in general, we have

$$E(X) = n \cdot p$$

it makes sense intuitively, but can we show it theoretically?

- ▶ the probability that a randomly selected letter in an English word is e is 0.2
- ▶ what is the probability that an 10-letter word contains exactly three occurrences of *e*?

- ► the probability that a randomly selected letter in an English word is *e* is 0.2
- ▶ what is the probability that an 10-letter word contains exactly three occurrences of *e*?
 - the number of ways to put 3 es into a 10-letter word, times the probability of each such word

$$\binom{10}{3} \cdot 0.2^3 \cdot (1 - 0.2)^7 = 120 \cdot 0.2^3 \cdot 0.8^7 = 0.201$$

- ► the probability that a randomly selected letter in an English word is *e* is 0.2
- ▶ what is the probability that an 10-letter word contains exactly three occurrences of *e*?
 - the number of ways to put 3 es into a 10-letter word, times the probability of each such word

$$\binom{10}{3} \cdot 0.2^3 \cdot (1 - 0.2)^7 = 120 \cdot 0.2^3 \cdot 0.8^7 = 0.201$$

▶ what is the mean value of the number of occurrences of e?

- ► the probability that a randomly selected letter in an English word is *e* is 0.2
- ▶ what is the probability that an 10-letter word contains exactly three occurrences of *e*?
 - the number of ways to put 3 es into a 10-letter word, times the probability of each such word

$$\binom{10}{3} \cdot 0.2^3 \cdot (1 - 0.2)^7 = 120 \cdot 0.2^3 \cdot 0.8^7 = 0.201$$

▶ what is the mean value of the number of occurrences of e?

$$10 \cdot 0.2 = 2$$

next week

- on Tuesday, we'll be in the computer lab
- ► I'll give some more information on distributions
- first computer exercise: study distributions empirically

