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overview of today's lecture

I classi�cation: general ideas

I Naive Bayes recap
I formulation, estimation
I Naive Bayes as a generative model

I other classi�ers (that are not generative)

I practical matters
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classi�ers. . .

I given an object, assign a category

I such tasks are pervasive in NLP
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example: classi�cation of documents

I assignment 1: develop a program that groups customer
reviews into positive and negative classes (given the text only)

I other examples:
I Reuters, ∼ 100 hierarchical categories
I classi�cation according to a library system (LCC, SAB)
I . . . by target group (e.g. CEFR readability) or some property of

the author (e.g. gender, native language)
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example: disambiguation of word meaning in context

A woman and child su�ered minor injuries after the car they were

riding in crashed into a rock wall Tuesday morning.

I what is the meaning of rock in this context?
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example: classi�cation of grammatical relations

I what is the grammatical relation between åker and till?
I e.g. subject, object, adverbial, . . .
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example: classi�cation of discourse relations

Mary had to study hard. Her exam was only one week away.

I what is the discourse/rhetorical relation between the two
sentences?

I e.g. IF, THEN, AND, BECAUSE, BUT, . . .
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features for classi�cation

I to be able to classify an object, we must describe its
properties: features

I useful information that we believe helps us tell the classes apart

I this is an art more than a science

I examples:
I in document classi�cation, typically the words
I . . . but also stylistic features such as sentence length, word

variation, syntactic complexity
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representation of features

I depending on the task we are trying to solve, features may be
viewed in di�erent ways

I bag of words: ["I", "love", "this", "film"]

I attribute�value pairs: {"age"=63, "gender"="F",

"income"=25000}

I geometric vector: [0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1]

I in this lecture and in the assignments, we will use the bag of
words representation
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a note on terminology

I we want to develop some NLP system (a classi�er, a tagger, a
parser, . . . ) by getting some parameters from the data instead
of hard-coding (data-driven)

I a statistician would say that we estimate parameters of a
model

I a computer scientist would say that we train the model
I or conversely, that we apply a machine learning algorithm

I in the machine learning course this fall, we will see several
such algorithms

I including algorithms that are not motivated by probabilities
and statistical theory
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training sets

I we are given a set of examples (e.g. reviews)

I each example comes with a gold-standard positive or
negative class label

I we then use these examples to estimate the parameters of our
statistical model

I the model can then be used to classify reviews we haven't seen
before
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scienti�c hygiene in experiments

I in addition to the training set, we have a test set that we use
when estimating the accuracy (or P, R, etc)

I like the training set, the test set also contains gold-standard
labels

I the training and test sets should be distinct!

I also, don't use the test set for optimization!
I use a separate development set instead
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Naive Bayes

I Naive Bayes is a classi�cation method based on a simple
probability model

I recall from the NLP course:

P(f1, . . . , fn, class) = P(class) · P(f1, . . . , fn|class)

= P(class) · P(f1|class) · . . . · P(fn|class)

I for instance: f1, . . . , fn are the words occurring in the
document, and class is positive or negative

I if we have these probabilities, then we can guess the class of
an unseen example (just �nd the class that maximizes P)

guess = argmaxclass P(f1, . . . , fn, class)



-20pt

UNIVERSITY OF

GOTHENBURG

Naive Bayes as a generative model

I Naive Bayes is an example of a generative graphical model

I a generative graphical model is de�ned in terms of a
�generative story� that describes how the data was created

I a generative model computes the joint probability

P(input, output)

I we can draw them using plate diagrams
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generative story in Naive Bayes
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generative story in Naive Bayes

I the model gives us P(this hotel is really nice,Positive)
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a plate diagram for Naive Bayes

I this �story� can be represented using a plate diagram:
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explanation of the plate diagram (1)

I grey balls represent observed variables and white balls
unobserved

I supervised NB: we see the words and the document classes

I unsupervised NB: we don't see the document classes
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explanation of the plate diagram (2)

I the arrows represent how we model probabilities
I the probability of a word xij is de�ned in terms of the

document class yi

I the rectangles (the �plates�) represent repetion (a �for loop�):
I the collection consists of documents i = 1, . . . ,m
I each document consists of words j = 1, . . . , ni
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generative story in hidden Markov models
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generative story in hidden Markov models
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generative story in PCFGs
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generative story in topic models (simpli�ed)
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what kind of information is available?

I supervised learning: the desired output classes are given

I unsupervised learning: the classes are not given

I semisupervised learning: some of the classes are given
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estimation in supervised Naive Bayes

I we are given a set of documents labeled with classes

I to be able to guess the class of new unseen documents, we
estimate the parameters of the model:

I the probability of each class
I the probabilities of the features (words) given the class

I in the supervised case, this is unproblematic
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estimation of the class probabilities

I we observe two positive (blue) documents out of four

I how do we estimate P(positive)?

I maximum likelihood estimate

PMLE(positive) =
count(positive)

count(all)
=

2

4

(four observations of a coin-toss variable)
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estimation of the feature probabilities

I how do we estimate P(�nice�|positive)?

I maximum likelihood estimate

PMLE(�nice�|positive) =
count(�nice�, positive)

count(any word, positive)
=

2

7
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dealing with zeros

I zero counts are as usual a problem for MLE estimates!

I smoothing is needed
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Laplace smoothing: add one to each count

I Laplace smoothing: add one to all counts

PLaplace(word |class) =
count(word, class)+1

count(any word, class)+ voc size

PLaplace(�nice�|positive) =
2+1

7+12345
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generative vs. discriminative models

I recall that a generative model computes the joint probability

P(input, output)

and is de�ned in terms of a �generative story�

I other types of classi�ers are called discriminative:
I they can compute some other probability instead � for instance

P(output|input)
I or classify in some other way without probabilities!
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some types of discriminative classi�ers

I logistic regression: maximum likelihood of P(output|input)
(read on your own)

I many other types of classi�ers, e.g. decision trees (Simon's
lecture)

I we will now study a very simple approach based on dictionary
lookup in a weight table

I we'll consider the use case of classifying reviews, like in your
assignment
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�rst idea: use a polarity wordlist

I . . . for instance the MPQA list
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document sentiment polarity by summing word scores

I store all MPQA polarity values in a table as numerical values

I e.g. 2 points for strong positive, -1 point for weak negative

I predict the overall polarity value of the document by summing
the scores of each word occurring

def guess_sentiment_polarity(document, weights):

score = 0

for word in document:

score += weights[word]

if score >= 0:

return "pos"

else:

return "neg"
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experiment

I we evaluate on 50% of a sentiment dataset
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

def evaluate(labeled_documents, weights):

ncorrect = 0

for class_label, document in labeled_documents:

guess = guess_sentiment_polarity(document, weights)

if guess == class_label:

ncorrect += 1

return ncorrect / len(labeled_documents)

I this is a balanced dataset, coin-toss accuracy would be 50%

I with MPQA, we get an accuracy of 59.5%

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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can we do better?

I it's hard to set the word weights

I what if we don't even have a resource such as MPQA?

I can we set the weights automatically?



-20pt

UNIVERSITY OF

GOTHENBURG

an idea for setting the weights automatically

I start with an empty weight table (instead of using MPQA)

I classify documents according to the current weight table

I each time we misclassify, change the weight table a bit
I if a positive document was misclassi�ed, add 1 to the weight

of each word in the document
I and conversely . . .

def train_by_errors(labeled_documents):

weights = Counter()

for class_label, document in labeled_documents:

guess = guess_sentiment_polarity(document, weights)

if class_label == "pos" and guess == "neg":

for word in document:

weights[word] += 1

elif class_label == "neg" and guess == "pos":

for word in document:

weights[word] -= 1

return weights



-20pt

UNIVERSITY OF

GOTHENBURG

an idea for setting the weights automatically

I start with an empty weight table (instead of using MPQA)

I classify documents according to the current weight table

I each time we misclassify, change the weight table a bit
I if a positive document was misclassi�ed, add 1 to the weight

of each word in the document
I and conversely . . .

def train_by_errors(labeled_documents):

weights = Counter()

for class_label, document in labeled_documents:

guess = guess_sentiment_polarity(document, weights)

if class_label == "pos" and guess == "neg":

for word in document:

weights[word] += 1

elif class_label == "neg" and guess == "pos":

for word in document:

weights[word] -= 1

return weights



-20pt

UNIVERSITY OF

GOTHENBURG

new experiment

I we compute the weights using 50% of the sentiment data and
test on the other half

I the accuracy is 81.4%, up from the 59.5% we had when we
used the MPQA

I train_by_errors is called the perceptron algorithm and is
one of the most widely used machine learning algorithms
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examples of the weights

amazing 171

easy 124

perfect 109

highly 108

five 107

excellent 104

enjoy 93

job 92

question 90

wonderful 90

performance 83

those 80

r&b 80

loves 79

best 78

recommended 77

favorite 77

included 76

medical 75

america 74

waste -175

worst -168

boring -154

poor -134

` -130

unfortunately -122

horrible -118

ok -111

disappointment -109

unless -108

called -103

example -100

bad -100

save -99

bunch -98

talk -96

useless -95

author -94

effort -94

oh -94
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the same thing with scikit-learn

I to train a classi�er:

vec = DictVectorizer()

clf = Perceptron(n_iter=20)

clf.fit(vec.fit_transform(train_docs),

numpy.array(train_targets))

I to classify a new instance:

guess = clf.predict(vec.transform(doc))

I more about classi�cation and scikit-learn in the course on
machine learning
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an aside: domain sensitivity

I a common problem with classi�ers (and NLP systems in
general) is domain sensitivity: they work best on the type of
texts used when developing

I a review classi�er for book reviews won't work as well for
health product reviews

book health
book 0.75 0.64

health 0.68 0.80

I it may depend on the domain which words are informative, and
also what sentiment they have

I for instance, small may be a good thing about a camera but
not about a hotel room
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the computer assignments

I assignment 1: implement a Naive Bayes classi�er and use it to
group customer reviews into positive and negative

I optionally: implement the perceptron as well, or use scikit-learn

I February 9 and 11

I report deadline: February 25

I assignment 2: a statistical analysis of the performance of your
classi�er(s)
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next lectures

I February 16 (in the lab): comparing classi�ers

I February 23 (here): tagging with HMM models


	introduction
	Naive Bayes definition and generative models
	estimation in the Naive Bayes model
	discriminative models
	the next few weeks

