
Statistical methods in NLP
Part-of-speech tagging

UNIVERSITY OF

GOTHENBURG

Richard Johansson

February 23, 2016

-20pt

UNIVERSITY OF

GOTHENBURG

overview of today's lecture

I HMM tagging recap
I assignment 3

I evaluating and comparing taggers

-20pt

UNIVERSITY OF

GOTHENBURG

overview

HMM tagging recap

assignment 3 overview and implementation hints

statistical recipes for tagger evaluation

the next few weeks

-20pt

UNIVERSITY OF

GOTHENBURG

tagging in general: the task

I we are given a list of words such as

['The', 'cat', 'sleeps']

I our task is to predict a list of tags such as

['DT', 'NN', 'VBZ']

I this is a sequence tagging problem

-20pt

UNIVERSITY OF

GOTHENBURG

a probabilistic model of tagging

I the typical probabilistic formulation of a tagger starts from

Bayes' rule:

argmax
T

P(T |W) = argmax
T

P(W |T)P(T)
P(W)

= argmax
T

P(W |T)P(T)

I P(T) is like a language model, but for tag sequences instead

of word sequences

-20pt

UNIVERSITY OF

GOTHENBURG

making the probabilities practical

I we need to make assumptions about P(T) and P(W |T)

I in a bigram tagger, the probability of the next tag depends

only on the previous tag (Markov assumption):

P(tn|t1, . . . , tn−1) ≈ P(tn|tn−1)

I this is called the transition probability

I the probability of a word depends only on its tag:

P(wn|tags, other words) ≈ P(wn|tn)

I this is called the emission probability

-20pt

UNIVERSITY OF

GOTHENBURG

hidden Markov models

P(tn|tn−1) P(wn|tn)

I a model where we have an unknown underlying sequence is

called a hidden Markov model (HMM)

-20pt

UNIVERSITY OF

GOTHENBURG

generative story in hidden Markov models

-20pt

UNIVERSITY OF

GOTHENBURG

generative story in hidden Markov models

-20pt

UNIVERSITY OF

GOTHENBURG

generative story in hidden Markov models

-20pt

UNIVERSITY OF

GOTHENBURG

generative story in hidden Markov models

-20pt

UNIVERSITY OF

GOTHENBURG

generative story in hidden Markov models

-20pt

UNIVERSITY OF

GOTHENBURG

how can we estimate the probabilities?

I to estimate P(tn|tn−1) and P(wn|tn), we need a corpus where

the part-of-speech tags have been annotated (by humans)

The DT

rifles NNS

were VBD

n't RB

loaded VBN

. .

As IN

interest NN

rates NNS

rose VBD

, ,

...

I in the next lecture, we'll also consider the case where we don't

have an annotated corpus

-20pt

UNIVERSITY OF

GOTHENBURG

estimating the probabilities

I just like we did with the Naive Bayes classi�er, we estimate the

probabilities by counting frequencies (MLE):

PMLE (noun|verb) =
count(verb, noun)

count(verb)
PMLE (cat|noun) =

count(noun: cat)

count(noun)

-20pt

UNIVERSITY OF

GOTHENBURG

smoothing. . .

I smoothing may be useful, in particular if the corpus is small
I for instance, Laplace smoothing for transition probabilities:

P(tn|tn−1) =
count(tn−1, tn) + λ

count(tn−1) + λ · T

where T is the number of distinct tags
I and for emission probabilities:

P(w |t) = count(w , t) + λ

count(t) + λ · V

where V is the number of distinct words

I usually there is some �special treatment� for the emission
probability P(wn|tn) if wn is unseen in the training corpus

I taking for instance punctuation, capitalization, numbers,
su�xes into account

-20pt

UNIVERSITY OF

GOTHENBURG

tagging

I how do we use our probability model to tag?

I conceptually: enumerate all possible tag sequences; use the

probabilities to �nd the best one

I however in long sentences, the number of possible tag

sequences is very large

I the Viterbi algorithm �nds the most probable underlying tag
sequence

I Viterbi runs in linear time with respect to the length of the
sentence

-20pt

UNIVERSITY OF

GOTHENBURG

the Viterbi algorithm

I for each possible tag ti of a word wi , we compute the best
tag sequence leading to ti

I for instance: for the word saw, we �nd the best sequence
ending with saw as a verb, and the best ending with saw as a
noun

-20pt

UNIVERSITY OF

GOTHENBURG

the trick

I to compute the best path ending with saw as a verb, consider

the best paths for the previous word and the transition

probabilities

I assume the previous word is e.g. man, which can be a noun or

a verb

I select the highest of
I the LP of the best path ending in man as a verb + the LP of

the transition verb → verb
I the LP of the best path ending in man as a noun + the LP of

the transition noun → verb

-20pt

UNIVERSITY OF

GOTHENBURG

tagging a sentence

I apply the Viterbi algorithm step by step

I after the last token of the sentence, add a special dummy end
token

I this token will emit a dummy end tag with probability 1

I the best tag sequence for the whole sentence is the best path

ending in the dummy tag

I �nally, retrace your steps from the dummy item to get the tags

I so you need backpointers

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

Viterbi example

-20pt

UNIVERSITY OF

GOTHENBURG

using more context

I tagging accuracy can possibly be improved by using more

contextual information

I in a trigram tagger, we use transition probabilities such as

P(tn|tn−1, tn−2)

I smoothing becomes more important as you use more context

-20pt

UNIVERSITY OF

GOTHENBURG

Search spaces...

I example: Will plays golf

 MD

NNP

NN

VBZ NN

VB

<E>

1

2

−1

1

2

1

2

2

4

0

1

−1

2−1

NNS

0

/

NN/NNS

NN/VBZ

MD/VBZ

MD/NNS

NNP/NNS

NNP/VBZ
/NNP

/MD

/NN

VBZ/NN

VBZ/VB

NNS/VB

NNS/NN

NN/<E>

VB/<E>

<E>/<E>

-20pt

UNIVERSITY OF

GOTHENBURG

overview

HMM tagging recap

assignment 3 overview and implementation hints

statistical recipes for tagger evaluation

the next few weeks

-20pt

UNIVERSITY OF

GOTHENBURG

assignment 3

I write a bigram part-of-speech tagger in Python
I estimate the emission and transition probabilities
I implement the Viterbi algorithm
I evaluate the tagger on a test set
I a little bit of error analysis

I the code template contains some comments that can be useful

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: estimation (1)

I you need to estimate the two types of probabilities:

PMLE (noun|verb) =
count(verb, noun)

count(verb)
PMLE (cat|noun) =

count(noun: cat)

count(noun)

I so you need to have data structures that count
I . . . occurrences of a tag (e.g. noun)
I . . . occurrences of a tag bigram (e.g. verb+noun)
I . . . occurrences of a word and tag (e.g. cat+noun)

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: estimation (2)

I it can be useful to use a �double dictionary� pattern

word_tag_counter[word][tag] += 1

I to get rid of key checks that clutter the code, you can use a
defaultdict(Counter)

I (recall: Counter is a frequency table)

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: estimation (3)

I the pseudocode says determine the possible tags for this word

I the most practical solution to this is to use all the tags that
you observed for a word

I and possibly more, if you have a tag lexicon

I if you store your emission probabilities using the double

dictionary pattern, it's easy to �nd the allowed tags (and their

probabilities) for a word

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: estimation (4)

I the code will be a bit simpler if you make sure that there are
transition probabilities for all possible transitions

I even those you haven't seen, so use smoothing!

I also, it's probably best if you use special tags for the start and

end of the sentence

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (1)

I what do you think we should use to represent the links that

we have drawn?

I we need something that remembers
I the (log) probability of the path ending in that link
I the tag
I the previous link

I simplest solution is probably to use a tuple of these three

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (1)

I what do you think we should use to represent the links that

we have drawn?

I we need something that remembers
I the (log) probability of the path ending in that link
I the tag
I the previous link

I simplest solution is probably to use a tuple of these three

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (2)

I at each step of the algorithm, we keep a list of links

I there's one link for each possible tag at that step

I the link represents the best path leading up to that tag

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (3)

I in the �rst step, the list contains a single dummy link
I the log probability is 0 (100% chance of being here!)
I special start tag (for instance <S>)
I no previous link (use None or similar)

I let's assume we want to build the link for the DT tag

I �nd the previous link that maximizes the sum of
I log probability in the previous link
I log of transition probability to DT
I log of emission probability of a for DT

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (3)

I in the �rst step, the list contains a single dummy link
I the log probability is 0 (100% chance of being here!)
I special start tag (for instance <S>)
I no previous link (use None or similar)

I let's assume we want to build the link for the DT tag

I �nd the previous link that maximizes the sum of
I log probability in the previous link
I log of transition probability to DT
I log of emission probability of a for DT

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: Viterbi (4)

I in the last step, we end the sequence with another dummy link

I then we need to follow the links backwards to �nd the tag
sequence

I (see pseudocode in the Python �le)

-20pt

UNIVERSITY OF

GOTHENBURG

some hints: unseen words

I you'll have to decide what to do in case you encounter a word

that's not contained in your emission table

I a few possible solutions:
I select the most frequent tag (e.g. noun)
I allow all possible tags, but ignore the emission
I allow all possible tags, and try to estimate the probability of

emitting a rare word
I use a Naive Bayes model to estimate the emission probability,

based on some features such as capitalization, the presence of
numbers, etc

I categorize words (e.g. �capitalized�, �number�) and estimate
special probabilities (see notes by Collins)

-20pt

UNIVERSITY OF

GOTHENBURG

overview

HMM tagging recap

assignment 3 overview and implementation hints

statistical recipes for tagger evaluation

the next few weeks

-20pt

UNIVERSITY OF

GOTHENBURG

evaluating a tagger

I we typically evaluate a tagger like this:

tagging accuracy =
number of correctly tagged words

number of words in the corpus

-20pt

UNIVERSITY OF

GOTHENBURG

example of how this can be done in Python

I goldstandard and guess are lists of tagged sentences
I and each sentence is a list of word�tag pairs

I note the following Python tricks:
I zip takes two lists, and returns a list of pairs
I sum on a list of booleans counts the number of True

def evaluate_tagger(goldstandard, guess):

n_tokens = 0

n_correct = 0

for sen_gold, sen_guess in zip(goldstandard, guess):

n_correct += sum(tt == gt

for tt, gt in zip(sen_gold, sen_guess))

n_tokens += len(sen_gold)

return n_correct / n_tokens

-20pt

UNIVERSITY OF

GOTHENBURG

statistical recipes we've seen so far

I for the classi�ers, we considered three scenarios:
I how to make a con�dence interval for the accuracy?
I how to compare the the accuracy to some given value?
I how to compare two classi�ers?

I we saw recipes to address these questions, and they were built

on the binomial distribution

I but: it's not statistically sound to use these techniques to

evaluate a tagger

-20pt

UNIVERSITY OF

GOTHENBURG

statistical recipes when the output is complex

I we'll now see how these statistical questions can be addressed

when evaluating a tagger

I actually, the techniques are general and can be used when
evaluating other kinds of applications, including

I bracket precision and recall for a phrase-structure parser
I attachment accuracy for a dependency parser
I BLEU for machine translation
I word error rate for speech recognition

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrap resampling

I the variation in our estimate depends on the distribution of

possible test sets

I in theory, we could �nd a con�dence interval by considering

the distribution of all possible test sets, but this can't be done

in practice

I the trick in bootstrapping � invented by Bradley Efron � is to

assume that we can simulate the distribution of possible test

sets by picking randomly from the original test set

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrapping a con�dence interval, pseudocode

I we have a test set T consisting of k sentences

I we compute a con�dence interval by generating N random test

sets and �nding the interval where most estimates end up

repeat N times

T ∗ = pick k sentences randomly from T

a = estimated accuracy of the tagger on T ∗

store a in a list A

return 2.5% and 97.5% percentiles of A

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
0

500

1000

1500

2000

2500

3000

3500

4000

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrapping a con�dence interval in Python (part 1)

def bootstrap_ci(goldstandard, guess, N):

for instance [(8,9), (6,6), (12,14), ...]

evals = [evaluate_sentence(sen_gold, sen_guess)

for sen_gold, sen_guess in zip(goldstandard, guess)]

for instance [0.87, 0.92, 0.88, 0.89, ...]

A = [random_testset_accuracy(evals) for _ in range(N)]

lower = scipy.percentile(A, 2.5)

upper = scipy.percentile(A, 97.5)

return lower, upper

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrapping a con�dence interval in Python (part 2)

def evaluate_sentence(sen_gold, sen_guess):

n_correct = sum(t1 == t2

for t1, t2 in zip(sen_gold, sen_guess))

return n_correct, len(sen_gold)

def random_testset_accuracy(evals):

evals is for instance [(8,9), (6,6), (12,14), ...]

n_words = 0

n_correct = 0

for _ in range(len(evals)):

sentence_eval = random.choice(evals)

n_correct += sentence_eval[0]

n_words += sentence_eval[1]

return n_correct / n_words

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrapping for comparing to a �xed value

I is the tagging accuracy signi�cantly greater than 0.94?

I we compute the p-value by checking how often the

accuracy falls below 0.94

repeat N times

T ∗ = pick k sentences randomly from T

a = estimated accuracy of the tagger on T ∗

if a < 0.94
increase counter C

return C/N

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
0

500

1000

1500

2000

2500

3000

3500

4000

-20pt

UNIVERSITY OF

GOTHENBURG

bootstrapping for comparing two taggers

I is tagger A signi�cantly better than tagger B?

I we use a lot of randomly generated test sets, and compute the

p-value by checking how often tagger B outperforms tagger A

repeat N times

T ∗ = pick k sentences randomly from T

aA = estimated accuracy of tagger A on T ∗

aB = estimated accuracy of tagger B on T ∗

if aB > aA
increase counter C

return C/N

-20pt

UNIVERSITY OF

GOTHENBURG

overview

HMM tagging recap

assignment 3 overview and implementation hints

statistical recipes for tagger evaluation

the next few weeks

-20pt

UNIVERSITY OF

GOTHENBURG

the computer assignments

I assignment 3: tagger implementation

I February 25 and March 1

I report deadline: March 10

-20pt

UNIVERSITY OF

GOTHENBURG

next lectures

I March 3: unsupervised and semisupervised methods

I March 10: machine translation (with Prasanth)

I March 15 and 17: VG assignment lab sessions (and catchup)

	HMM tagging recap
	assignment 3 overview and implementation hints
	statistical recipes for tagger evaluation
	the next few weeks

