THE KARP FRONTEND

INSTALLATION AND CUSTOMIZATION
Karp 1.0b1, 2015-12-04

DRAFT

SPRAKBANKEN
UNIVERSITY OF GOTHENBURG

Contents

1. Installation

2. Building Karp

3. Configuration files and templates
app/config.js — the main configurations file
Lexicon templates

4. Translating the user interface

5. Using Karp as a lexicon editor
Lexicon config files
The structure object
The template object
GUI Handlers
Creating your own GUI handlers

1. Installation

You can run the Karp frontend from any web server, but when you are working locally with
Karp, it is recommended that you use the provided Grunt (www.gruntjs.com) script.

To run the frontend through the Grunt script, you will first need to install node.js
(www.nodejs.org) on your computer, preferably through a package manager
(https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager) or download an
installer (http://nodejs.org/download/).

You can then use the node-js package mangager (npm) to install some other things you
need.

Start off with the global dependencies (Bower and the Grunt Command Line Interface):
> npm install -g bower grunt-cli

After that you can install all local dependencies by standing in the base Karp directory and
typing:

> npm install && bower install

And to start up Karp under node.js, stand in the Karp directory and type:

> grunt serve

Karp should now open up automatically in your web browser. If doesn't you can go to:

http://localhost:9000/

CoffeeScript files are automatically compiled to JavaScript as required, additionally causing
the browser window to be reloaded to reflect the new changes.

2. Building Karp

Before you upload your Karp instance to your server, you should build it. Do this simply with:
> grunt build

You will find the build in the dist/ directory. You can start the server with the built version
of Karp using:

> grunt serve:dist

http://www.gruntjs.com/
http://www.nodejs.org/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://nodejs.org/download/
http://127.0.0.1:9000/

3. Configuration files and templates

Normally you need to make changes to the following files:

app/config.js
app/lexicons/<your_lexicon_id>/template.html|

and if you want your lexicon to be editable, you also have to make changes to:

app/lexicons/<your_lexicon_id>/editor_config.js
appl/config.js — the main configurations file

The main config file should define a JavaScript object called 'settings'
var settings = {};
The settings object can have the following members:

languages (object) required
definitions of language names for use with the GUI and with multi-language
resources. The name should should correspond to a translation key and the
localName should be the name in the respective language.

settings.languages = {};

settings.languages.eng = {
name : "lang english",
localName : "English"

}i

settings.languages.swe = {
name : "lang swedish'",
localName : "Svenska"

interfaceLanguages (array of strings) required
An array with all the languages to use with the GUI.

settings.interfacelanguages = ["swe", "eng"];

defaultLanguage (string) required
The I1SO code for the GUI language used by default.

" "o,

settings.defaultLanguage = "swe'";

backendBaseURL (string) required
The base URL (without any commands) to YOUR Karp Backend.

settings.backendBaseURL =
"https://ws.spraakbanken.gu.se/ws/karp/v1l";

korpBackendURL (string)
The URL for your Korp backend, if you have one.

lexicons (object) required
Some basic settings for each lexicon you want to use. Each key should be a lexicon

ID.
settings.lexicons = {};
settings.lexicons.saldo = {

}s

The lexicon objects may have the following members:

title (string) required
The human readable name of the lexicon. It will be translated if there is a translation
key.

desc (string)
A short description of the lexicon. It will show up in the lexicon chooser.

labelField (string) required
The ID of a field definition to use for displaying labels in listings.

extraLabelField (string)
An optional extra ID of field definition to use for secondary information with labels in
listings.

template (string) required
A path for the Angular-JS html template to use for showing the search results.
We suggest the path: "lexicons/YOUR LEXICON ID/template.html"

editorConfig (string)

A path to a config file for the editor. If this property exists, Karp will enable the editing
capabilities for the lexicon.

We suggest the path: "lexicons/YOUR LEXICON ID/editor config.js"

fields (object) required
Definitions for the different data fields. Each key should be the ID of the field (which
normally is the same ID as is used in the backend).

settings.fields = {};
settings.fields.sense = {

}s

NOTE: You don't need to make definitions for all fields of your data in the config.js file, but
the fields you define will be searchable in the extended search tab and will also be listed in
the Statistics tab. You will also be able to use them as labels for entries in various listings.

The field objects may have these members:

caption (string) required
The human readable name of the field. It will be localized if there is a
translation key available.

caption : "sb index sense',

reallndex (string)
Normally the key of the field object must be the same as the backend
field, but if you want to make an alias to a field (e.g. you could make a
'synset’ item which is actually searching a 'sense’ field) you will have
to use 'reallndex' which must be the ID of the backend field. You will
probably not need to set this property.

reallIndex : "sense",

labelPath (string) required
The path to the field in the json entry object. It is needed for the
statistics results view and for generating listings.
NOTE: If the corresponding backend field defines more than one json
path, you should choose the one which makes the most sense to use
as label for a result.

labelPath : ".Sense.senseid",

relations (array of strings) required
The relations which should be used as alternatives for the extended
search.
Possible values:
"equals”
"contains"
"startswith"
"endswith"
"exists"
"missing"
"regexp"
"lte" (less than)
"gte" (greater than)

relations : ["equals", "missing"],

resources (array of strings) required
The ID of each lexicon which uses this particular field.
resources : ["saldo", "swefn"],
formatWith (string)

An ID of a 'GUI handler' to use for the statistics rendering of the field.
(See the section GUI handlers.)

formatWith : "stringHandler",
formatArgs (array of strings)
Any arguments you wish to supply to the GUI handler.

(See the section GUI handlers.) Defaults to an empty array.

formatArgs : ["example'"],

set (string)
An ID for a set definition which will be used as alternatives in the
extended search.
(See the section Sets.)

set : "posTags",

folders (object)
An optional folder hierarchy for the lexicon chooser.

settings.folders = {};
settings.folders.modernlLexicons = {
title : "modern",
contents : ["saldo", "swefn"]
i

settings.folders.olderLexicons = {

}s

The title will be translated if there is a corresponding translation key. Any lexicons
not in a folder will be added to the first level in the hierarchy.

sets (object)

All sets should be defined here. Sets are used in the extended search as well as in
the editor, usually in the form of a dropdown menu form which the user can choose
an item to search for or to add as trait to a lexicon entry.

type (string) required

Should be one of "entries", "closed" and "dynamic" [dynamic is not yet
implemented!].

The "entries™ type needs a query and a lexicon on which to apply the query.

settings.sets.frames = {
type : "entries",
query : "extended]| |and|senselexists",
lexicon : "swefn"

};

The actual set will be all entries found. The labelField in the lexicon definition will be
used.

The "closed" type needs an items array, where each item has anid and a t
member.

The id is what will actually be used as model data for constructing queryies and what
will be saved in the lexicons when editing. The t is the translation key for what is
presented in the GUI.

settings.sets.swefnDomains = {
type : "closed",
items : [
{id: "Gen", t : "swefn general"},
{id: "Med", t : "swefn medical"},
{id: "Art", t : "swefn arts"}

}s

modes (object) required
It is possible to have different modes in the same Karp installation for different kinds
of user groups. For example, Sprakbanken has a special mode for user of the
Swedish Constructicon:

K!%’ f6r Konstruktivon L # Mina lexikon ~ Logga ut jonatan.uppstrom@gu.se Svenska | Engelska Om Karp/Citera
SVENSKT KONSTRUKTIKON Alla konstruktioner =~
Svenskt konstruktikon &r en fritt tillganglig konstruktionsdatabas, dvs. en samling beskrivningar av svenska konstruktionsménster. Dessa absolit fras.ined

konstruktioner kan vara allt frdn véldigt generella strukturer till hgst specifika uttryckssatt. Vad de alla har gemensamt &r att ett visst
sprakligt uttrycksmonster regelméssigt forknippas med en viss betydelse eller funktion.

Hon kom med hénderna fulla av blommor
additiv samordning.sévél
visa mer... sdvél Apollo som Venus
Adj-attribut efter
négot bldtt
Adj men dock
Det skapar ett litet men dock hopp om att
férslaget kan dras tillbaka.
Adj nog InfP
snéll nog att gifta sig med honom
Adjektiv nog
trakigt nog
Hitta ingéngar dér konstruktion s &rlikamed ¢ absolut frasmed @ eller... Adjektiv som Nominal.abstrakt
Det fysiska &r inte alit.
©och.. ©utom... Adjektiv som Nominal.anaforisk
Den gula &r finast
m Statistik... adjektiv som nominal.folk pl
De omutbara

Adv/NP in PP rum
50 meter in p& upploppet
Adv/NP in PP tid

Anvindarhandledning | Pedagogiska tillimpningar | Projekibeskrivning | Publikationer

S6k i konstruktikonet Fritextsdkning Sokhistorik

& Rensa

[filter]

Forenklad visning: [Z0

The differences from the standard interface include:

There is no lexicons chooser. Construkticon is the only lexicon to search in.
There is a special header with relevant information.

The extended search tab has a different label.

The extended search and freetext search tabs have switched place.

e The sidebar is visible by default and its lists are predefined.
e The results are shown in simplified way by default and there is a button under
the sidebar to turn the simplified mode on and off.

There should always be at least one mode, the DEFAULT mode:

settings.modes = {};
settings.modes.DEFAULT = {
defaultExtended : "and|pos|equals|nn",
listings : [
{
set : "constructions",
buttonCaption : "const in konst"
b
{
set : "frames",
buttonCaption : "frames in swefn"

bi
The members of the mode objects are the following:

defaultExtended (string) required
The default query for the extended search.

listings (array of objects) required?
These are the predefined choices for the sidebar listings. There are two kinds
of listings.
Direct listings
These listing object should have a set (the ID of a set defined in settings.sets)
and a buttonCaption (which will be translated of there is an available
translation key). The user will directly see a list of entries.
Indirect listings
These listings don't reference a set directly. They instead define a field
property which will be used for generating a second dropdown menu where
the user can select to list all entries where the particular field matches the
choice in the second menu.

10

Konstruktioner per typ... =

huvudsats =

bara.desiderativ
Bara det inte regnar!

useKeyboard (boolean)
Controls whether or not to show the "helper keyboard" beside the textbox for
the simple search. Defaults to true.

simpleSearchCaption (string)
The translation key for customizing the simple search tab.

extendedSearchCaption (string)
The translation key for customizing the extended search tab.

prioritizeFields (array of strings)
Use this to highlight the most important fields to search in the extended
search.

konstruktion

typ
kategori

definition

prioritizeFields : ["construction", "type", "cat"]

sidebar (string)
Should the sidebar be visible? Possible values:

"NEVER"
The sidebar will not be used at all.

"MINIMIZED" (the default value)
The sidebar will be hidden but can be shown by clicking 'Listings' in
the top menu on the screen.

"MAXIMIZED"
The sidebar will be shown but can be hidden by clicking on the arrow
in the top left of the sidebar.

"ALWAYS"
The sidebar will always be shown.

simplifiedAndAdvanced (boolean)

11

If true, there will be a switch below the sidebar to choose between a simplified
and an advanced mode. Defaults to false.

In the lexicon templates, <tr karprow advanced="true"
ng-model="hit. source.myField"> ... </tr> can be used. Sucha

row will be hidden either if the model is empty or if simplified mode is on. You
can use this on other HTML tags as well, despite the name karprow.

switchSearchTabs (boolean)
Makes the extended search the default (and first) tab. Defaults to false.

Lexicon templates

Each lexicon should have its own display template for the Karp results. The file should
preferrably have this path: app/lexicons/<lexicon_name>/template.html

A minimal template could look like this (The bold parts of the example are parts that you
probably want to change and extend in your own template.):

<table class="templateTable">

<thead>
<th></th>
<th>{{'translationKeyForTheExampleHeader' | loc}}</th>
</thead>
<tbody>
<tr ng-repeat="hit in hits">
<td>
<console ng-model="hit. id" resource="exampleLex"/>
</td>
<td>
{{hit. source.exampleText}}
</td>
</tr>
</tbody>
</table>

This will result in this view, with two entries found:

12

EXAMPLE LEXICON ~ 2 Hits

AN EXAMPLE HEADER

This is an example feature of a lexicon.

And this is the second hit in the lexicon.

If you are not familiar with AngularJS templates, https://docs.angularjs.org/guide/templates is

a valuable source of information. Especially ng-repeat, ng-1if and ng-show are
important concepts to understand.

There are a few things you should note:

The {{ ... }} notation can be used to output data from the actual result. The
ng-repeat directive tells Karp to create one table row for each hit, where the model
data for the hitis stored in hit. source .

The | loc (Karp specific) filter should be used when you want to localize the string
using a translation key.

The <console ng-model="hit. id" resource="exampleLex"/> partis
used for displaying the cog button with which the user (among other things) may
choose to edit the entry. You should change exampleLex to your lexicon ID.

You can use the | ensurearray filter (Karp specific, not shown above) to make
sure that something is always an array (if it is not an array then it is turned into an
array with only one item). This can be of help when you want to use ng-repeat to
make lists of data that is not guaranteed to be an array.

An example:

You canuse <tr karprow ng-model="hit. source.myField">...</tr>
to hide the row if the model is empty, so you can make sparse entries more compact.
You can use this on other HTML tags as well, despite the name karprow.

{{p}}
,

13

https://docs.angularjs.org/guide/templates

4. Translating the user interface

Inthe app/translations/ directory you will find the translation files. The names should
be locale-languagelD. json and domain-languagelD. json , where languagelD is one
of theitems in settings.interfacelanguages in config. js. Make sure that the
same language IDs are also present as keys in the settings.languages object, where
the human readable language names are defined.

The 1ocalel...]. json files contains the translation keys for the main user interface, while

the domain[...]. json files contain keys specific for your domain, including lexicon names,
labels in your templates, field names etc.

14

5. Using Karp as a lexicon editor

Lexicon config files

Each lexicon to be edited needs to have its own editor config file as well. The
settings.lexicons.your lexicon id.editorConfig property in the main
config.js file should point to this file. Normally it is named editor_config.js and is placed in the
lexicons/your_lexicon_id/ directory.

The skeleton for the file looks like this:
var structure = {};

var template = {};
registerKarpEditorConfig("the lexicon id", structure, template);

structure defines the structure of an entry in the lexicon, and how it should be shown in the
user interface.

template is a javascript object that will be cloned and used as template when the user
makes a new entry in the editor.

NOTE: The lexicon config files are loaded dynamically by Karp which can make them
harder to debug than the general config.js file since compiling errors and exceptions will
not show up red in your browser console. However, if Karp cannot load a file, it will tell you
as much as it can about the problem and (if possible) return any error codes or exceptions
in blue text in the browser console, like so:
WARNING. Could not load swefn editor config from lexicons/swefn/config.js:
SyntaxError: Unexpected string

If you still can't find the error, you can copy-paste portions of your file into the browser
console to see where the browser complains.

You can also suffix (put it on the last line in the file) your files with:

/@ sourceURL=a-name-of-your-choice.js

This tells your browser to let you use its debugging tools.

In Chrome, you will have to look for the file in the '(no domain)' collection under Sources.

15

The structure object

The structure object is a hierarchical representation of an entry in the lexicon. Here is an
example:

var structure = {
"properties": {
"lemma german": {
"label": "Baseform German",
"multi": false,
"dummy": true,
"handler": "stringHandler",

"collapsable": false
Yo

"pos german": {
"label": "Part of speech German",
"multi": false,
"dummy": true,
"handler": "comboStringHandler",
"set": "panaceaPos",

"collapsable": false

by
"english": {

"label": "English",
"multi": true,
"dummy": true,
"collapsable": true,
"properties": {
"lemma english": {
"label": "Baseform English",
"multi": false,
"dummy" : true,
"handler": "stringHandler",

"collapsable": false

b
"pos english": {

"label": "Part of speech English",
"multi": false,

"dummy": true,

"handler": "stringHandler",

"collapsable": false
b
"package prob": {
"label": "Package probability",
"multi": false,
"dummy": true,

16

"handler": "numberFieldHandler",
"collapsable": false

by
"target prob": ({

"label": "Target probability",
"multi": false,

"dummy": true,

"handler": "numberFieldHandler",

"collapsable": false

by

"corpus prob": {
"label": "Corpus Probability",
"multi": false,
"dummy": true,
"handler": "numberFieldHandler",
"collapsable": false

Each item can either be a branch (if it has its own "properties™ property) or a leaf. The
topmost level is always a branch. In the example above, there is one additional branch,
"english" and some leaves; "lemma english", "target prob", "corpus prob"
etc. These are not magical Karp keywords but features of the particular lexicon.

However, each field should have properties that decide how the editor will present and work
with the data:

label (string)
The human readable label for the field in the editor.

multi (boolean)
Should the field/branch be an array? If set to true, a plus icon will show up
in the editor next to the item to add a new field/branch and it will be handled as an
array internally.

dummy (boolean)
If set to true, a "dummy" item will always be shown in the editor if the field has not
(yet) been filled. Defaults to false.

handler (string)
An ID of a GUI handler which should be used for editing the particular field. It is only
relevant to leaves. A leaf can be a simple data item like a boolean or a string but it

17

can also be a complex json structure. It is always atomic in the way that its editing is
handled as one unit - using a GU/ Handler. (See the section GUI Handlers.)

args (unspecified array)
For supplying arguments to the GUI handler — making it possible to customize some
aspects of editing. Defaults to an empty array.

set (string)
An ID of a set defined in the main config file. How the set is used depends on the
GUI handler.

alwaysOneltem (boolean)
This property can be set to true when you have an array but you know you will
always have only one item in it. It mimics the looks and behaviour of single item even
though it's actually an array. You will for example not see any plus icons for adding
new fields/branches. Defaults to false.

collapsable (boolean)
Can be used if you don't want the item to be collapsable with the disclosure triangle.
Defaults to true.

indentation (boolean)
Normally a branch gets +1 indentation level. Use "indentation" : false to supress this
behavior. Defaults to true.

note (string)
Use this to add a "post-it note" to the field with extra information to the user.

The template object

When the user creates a new entry, the template object gets cloned and becomes the new
entry data.
Here is an example of a template object for the lexicon above:

var template = {
"lemma german": "untitled",
"english™: [{}]

b

We make "english" an array with one empty object so that we start of with one empty
item in the editor.

18

Thus, when a new entry is created in the editor, it will then look something like this:

x ¢ Baseform German untitled

¢ Part of speech German

English

¥ B
¢ Baseform English
¢ Part of speech English
¢ Package probability
¢ Target probability
Corpus Probability

4]

There are more unfilled fields than what is defined in the template, these are the so called
dummy fields from the structure object.

NOTE: It is possible to use the special string " AUTOFILL:USERNAME" in the template
object to fill a field with the username of the current user (not shown in the example
above).

GUI Handlers

A GUI handler is responsible for:

In the editing mode:

- displaying the GUI when editing

- generating HTML for the non-edit state of the field

- handle the connection between the GUI and the actual model data

There are several predefined handlers to choose from:

"stringHandler"
Proides a simple text field for editing.

19

"numberFieldHandler"
A field that only accepts numbers.

"choiceStringHandler"
Provides a dropdown list for choosing between alternatives in a set.

' Finished a

"comboStringHandler"

Combines the two above handlers by letting the user switch between using a
dropdown list of predefined items in a set and using a text field for any additional
input.

aspekt 74

"autocompletionStringHandler"
Provides a text field which has an autocompletion feature for selecting items from a
set. The user may still assign other values as well.

| contr

Be_in_control
Contraction
Contrary_circumstances
Contrition

Control

Controller_object

"checkboxHandler"
A simple checkbox which results in either true or false.

"markupHandler”

20

Let's the user edit marked up XML inside of the json structure, like so:

[[The fox]animal jumped]action very high.

The underlying data would look like this:

"xml" : '<example><e n="0" name="Action"><text n="0">
</text><e n="1" name="Animal">The fox</e><text n="2">
jumped</text></e><text n="1"> very high.</text></example>'

This can be useful for annotating things like examples, idiomes etc.

The n-indexes can be useful if you want to convert the xml into json later on, but you
might just as well ignore them if you are only interested in exporting for xml in the
end.

The top level tag (in this case '<example>') is decided by supplying a string as the

first argument to the handler:

"handler" : "markupHandler",
"args" : ["example"]

NOTE: The HTML generator capacity of the GUI handler may also be used from inside a
lexicon template by using the directive <handler>, like this:

<handler id="markupHandler" ng-model="hit.example" args=""/>

Creating your own GUI handlers

If you feel that the predefined GUI handlers aren't suited for you needs, you can add your
own. You should preferrably put them in the file
app/scripts/domain gui handlers.coffee to lessen the risk of broken code in
future versions of Karp. The header in this file provides the necessary information.

21

